Package: shapr 1.0.1.9000
Martin Jullum
shapr: Prediction Explanation with Dependence-Aware Shapley Values
Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements methods which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values. An accompanying 'Python' wrapper ('shaprpy') is available through the GitHub repository.
Authors:
shapr_1.0.1.9000.tar.gz
shapr_1.0.1.9000.zip(r-4.5)shapr_1.0.1.9000.zip(r-4.4)shapr_1.0.1.9000.zip(r-4.3)
shapr_1.0.1.9000.tgz(r-4.4-x86_64)shapr_1.0.1.9000.tgz(r-4.4-arm64)shapr_1.0.1.9000.tgz(r-4.3-x86_64)shapr_1.0.1.9000.tgz(r-4.3-arm64)
shapr_1.0.1.9000.tar.gz(r-4.5-noble)shapr_1.0.1.9000.tar.gz(r-4.4-noble)
shapr_1.0.1.9000.tgz(r-4.4-emscripten)shapr_1.0.1.9000.tgz(r-4.3-emscripten)
shapr.pdf |shapr.html✨
shapr/json (API)
NEWS
# Install 'shapr' in R: |
install.packages('shapr', repos = c('https://norskregnesentral.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/norskregnesentral/shapr/issues
Pkgdown site:https://norskregnesentral.github.io
explainable-aiexplainable-mlrcpprcpparmadilloshapleyopenblascppopenmp
Last updated 1 days agofrom:c30ecf3a2a. Checks:3 OK, 6 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 22 2025 |
R-4.5-win-x86_64 | OK | Jan 22 2025 |
R-4.5-linux-x86_64 | OK | Jan 22 2025 |
R-4.4-win-x86_64 | NOTE | Jan 22 2025 |
R-4.4-mac-x86_64 | NOTE | Jan 22 2025 |
R-4.4-mac-aarch64 | NOTE | Jan 22 2025 |
R-4.3-win-x86_64 | NOTE | Jan 22 2025 |
R-4.3-mac-x86_64 | NOTE | Jan 22 2025 |
R-4.3-mac-aarch64 | NOTE | Jan 22 2025 |
Exports:additional_regression_setupappend_vS_listcheck_convergencecli_compute_vScli_itercli_startupcoalition_matrix_cppcompute_estimatescompute_shapleycompute_timecompute_vSexplainexplain_forecastfinalize_explanationget_extra_comp_args_defaultget_iterative_args_defaultget_model_specsget_output_args_defaultget_supported_approachesget_supported_modelsplot_MSEv_eval_critplot_SV_several_approachesplot_vaeac_eval_critplot_vaeac_imputed_ggpairspredict_modelprepare_dataprepare_data_causalprepare_next_iterationprint_iterregression.train_modelsave_resultssetupsetup_approachshapley_setuptesting_cleanupvaeac_get_evaluation_criteriavaeac_get_extra_para_defaultvaeac_train_modelvaeac_train_model_continueweight_matrix
Dependencies:codetoolsdata.tabledigestfuturefuture.applyglobalslatticelistenvMatrixparallellyRcppRcppArmadillo
shapr: Explaining individual machine learning predictions with Shapley values
Rendered fromgeneral_usage.Rmd
usingknitr::rmarkdown
on Jan 22 2025.Last update: 2025-01-16
Started: 2024-12-23
Asymmetric and causal Shapley value explanations
Rendered fromasymmetric_causal.Rmd
usingknitr::rmarkdown
on Jan 22 2025.Last update: 2025-01-20
Started: 2024-12-23
More details and advanced usage of the vaeac approach
Rendered fromvaeac.Rmd
usingknitr::rmarkdown
on Jan 22 2025.Last update: 2025-01-16
Started: 2024-12-23
Shapley value explanations using the regression paradigm
Rendered fromregression.Rmd
usingknitr::rmarkdown
on Jan 22 2025.Last update: 2025-01-21
Started: 2024-12-23