Package: shapr 1.0.0.9000
Martin Jullum
shapr: Prediction Explanation with Dependence-Aware Shapley Values
Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements methods which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values. An accompanying Python wrapper (shaprpy) is available on GitHub.
Authors:
shapr_1.0.0.9000.tar.gz
shapr_1.0.0.9000.zip(r-4.5)shapr_1.0.0.9000.zip(r-4.4)shapr_1.0.0.9000.zip(r-4.3)
shapr_1.0.0.9000.tgz(r-4.4-x86_64)shapr_1.0.0.9000.tgz(r-4.4-arm64)shapr_1.0.0.9000.tgz(r-4.3-x86_64)shapr_1.0.0.9000.tgz(r-4.3-arm64)
shapr_1.0.0.9000.tar.gz(r-4.5-noble)shapr_1.0.0.9000.tar.gz(r-4.4-noble)
shapr_1.0.0.9000.tgz(r-4.4-emscripten)shapr_1.0.0.9000.tgz(r-4.3-emscripten)
shapr.pdf |shapr.html✨
shapr/json (API)
NEWS
# Install 'shapr' in R: |
install.packages('shapr', repos = c('https://norskregnesentral.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/norskregnesentral/shapr/issues
explainable-aiexplainable-mlrcpprcpparmadilloshapley
Last updated 1 days agofrom:2a3d08807a. Checks:OK: 1 ERROR: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 22 2024 |
R-4.5-win-x86_64 | ERROR | Nov 22 2024 |
R-4.5-linux-x86_64 | ERROR | Nov 22 2024 |
R-4.4-win-x86_64 | ERROR | Nov 22 2024 |
R-4.4-mac-x86_64 | ERROR | Nov 22 2024 |
R-4.4-mac-aarch64 | ERROR | Nov 22 2024 |
R-4.3-win-x86_64 | ERROR | Nov 22 2024 |
R-4.3-mac-x86_64 | ERROR | Nov 22 2024 |
R-4.3-mac-aarch64 | ERROR | Nov 22 2024 |
Exports:additional_regression_setupaicc_full_single_cppappend_vS_listcheck_convergencecli_compute_vScli_itercli_startupcoalition_matrix_cppcompute_estimatescompute_shapley_newcompute_timecompute_vScorrection_matrix_cppcreate_coalition_tableexplainexplain_forecastfinalize_explanationfinalize_explanation_forecastget_cov_matget_data_specsget_extra_est_args_defaultget_iterative_args_defaultget_model_specsget_mu_vecget_output_args_defaultget_supported_approacheshat_matrix_cppmahalanobis_distance_cppobservation_impute_cppplot_MSEv_eval_critplot_SV_several_approachespredict_modelprepare_dataprepare_data_causalprepare_data_copula_cppprepare_data_copula_cpp_causprepare_data_gaussian_cppprepare_data_gaussian_cpp_causprepare_next_iterationprint_iterregression.train_modelrss_cppsave_resultssetupsetup_approachsetup_computationshapley_setuptesting_cleanupvaeac_get_evaluation_criteriavaeac_get_extra_para_defaultvaeac_plot_eval_critvaeac_plot_imputed_ggpairsvaeac_train_modelvaeac_train_model_continueweight_matrixweight_matrix_cpp
Dependencies:codetoolsdata.tabledigestfuturefuture.applyglobalslatticelistenvMatrixparallellyRcppRcppArmadillo
shapr: Explaining individual machine learning predictions with Shapley values
Rendered fromunderstanding_shapr.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2024-11-22
Started: 2019-09-26
Asymmetric and causal Shapley value explanations
Rendered fromunderstanding_shapr_asymmetric_causal.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2024-11-22
Started: 2024-10-23
Shapley value explanations using the regression paradigm
Rendered fromunderstanding_shapr_regression.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2024-11-22
Started: 2024-04-17
More details and advanced usage of the vaeac approach
Rendered fromunderstanding_shapr_vaeac.Rmd
usingknitr::rmarkdown
on Nov 22 2024.Last update: 2024-11-22
Started: 2024-03-05