Package: shapr (via r-universe)

September 13, 2024

Version 0.2.3.9200

Title Prediction Explanation with Dependence-Aware Shapley Values

- Description Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements the method described in Aas, Jullum and Løland (2019)
 <arXiv:1903.10464>, which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values. An accompanying Python wrapper (shaprpy) is available on GitHub.
- URL https://norskregnesentral.github.io/shapr/,

https://github.com/NorskRegnesentral/shapr/

BugReports https://github.com/NorskRegnesentral/shapr/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

ByteCompile true

Language en-US

RoxygenNote 7.3.1

Depends R (>= 3.5.0)

- **Imports** stats, data.table, Rcpp (>= 0.12.15), Matrix, future.apply, methods
- **Suggests** ranger, xgboost, mgcv, testthat (>= 3.0.0), knitr, rmarkdown, roxygen2, ggplot2, gbm, party, partykit, waldo, progressr, future, ggbeeswarm, vdiffr, forecast, torch, GGally, progress, coro, parsnip, recipes, workflows, tune, dials, yardstick, hardhat, rsample, rlang

Contents

LinkingTo RcppArmadillo, Rcpp VignetteBuilder knitr Config/testthat/edition 3 Roxygen list(markdown = TRUE) Repository https://norskregnesentral.r-universe.dev RemoteUrl https://github.com/norskregnesentral/shapr RemoteRef HEAD RemoteSha ddd32c7c92ba9f37c8505720129d7e10979ccc4c

Contents

explain
explain_forecast 12 explain_tripledot_docs 18 feature_combinations 21 finalize_explanation 21 finalize_explanation 22 get_cov_mat 26 get_data_forecast 27 get_mu_vec 28 get_supported_approaches 28 lag_data 29 plot_MSEv_eval_crit 33 plot_SV_several_approaches 37 process_factor_data 41 reg_forecast_setup 42 release_questions 43 setup_ord 43 setup_computation 51
explain_tripledot_docs 18 feature_combinations 21 finalize_explanation 22 get_cov_mat 26 get_data_forecast 27 get_mu_vec 28 get_supported_approaches 28 lag_data 29 plot_MSEv_eval_crit 33 plot_SV_several_approaches 37 process_factor_data 41 reg_forecast_setup 42 setup_onted_approach 42 setup_approach 43 setup_approach 45
feature_combinations 21 finalize_explanation 22 get_cov_mat 26 get_data_forecast 27 get_mu_vec 28 get_supported_approaches 28 lag_data 29 plot.shapr 29 plot_MSEv_eval_crit 33 plot_SV_several_approaches 37 process_factor_data 41 reg_forecast_setup 42 setup_approach 43 setup_approach 45 setup_computation 51
finalize_explanation 22 get_cov_mat 26 get_data_forecast 27 get_mu_vec 28 get_supported_approaches 28 lag_data 29 plot.shapr 29 plot_MSEv_eval_crit 33 plot_SV_several_approaches 37 process_factor_data 41 reg_forecast_setup 42 release_questions 43 setup_approach 45 setup_computation 51
get_cov_mat
get_data_forecast 27 get_mu_vec 28 get_supported_approaches 28 lag_data 29 plot.shapr 29 plot_MSEv_eval_crit 33 plot_SV_several_approaches 37 process_factor_data 41 reg_forecast_setup 42 setup_approach 43 setup_approach 45 setup_computation 51
get_mu_vec28get_supported_approaches28lag_data29plot.shapr29plot_MSEv_eval_crit33plot_SV_several_approaches37process_factor_data41reg_forecast_setup42release_questions42setup_approach43setup_computation51
get_supported_approaches28lag_data29plot.shapr29plot_MSEv_eval_crit33plot_SV_several_approaches37process_factor_data41reg_forecast_setup42release_questions42setup_approach43setup_computation51
lag_data 29 plot.shapr 29 plot_MSEv_eval_crit 33 plot_SV_several_approaches 37 process_factor_data 41 reg_forecast_setup 42 release_questions 43 setup_approach 45 setup_computation 51
plot.shapr29plot_MSEv_eval_crit33plot_SV_several_approaches37process_factor_data41reg_forecast_setup42release_questions42setup43setup_approach45setup_computation51
plot_MSEv_eval_crit33plot_SV_several_approaches37process_factor_data41reg_forecast_setup42release_questions42setup43setup_approach45setup_computation51
plot_SV_several_approaches37process_factor_data41reg_forecast_setup42release_questions42setup43setup_approach45setup_computation51
process_factor_data41reg_forecast_setup42release_questions42setup43setup_approach45setup_computation51
reg_forecast_setup 42 release_questions 42 setup 43 setup_approach 45 setup_computation 51
release_questions 42 setup 43 setup_approach 45 setup_computation 51
setup_approach 43 setup_computation 45
setup_approach 45 setup_computation 51
setup_computation
vaeac_get_data_objects
vaeac_get_evaluation_criteria
vaeac_get_extra_para_default
vaeac_plot_eval_crit
vaeac_plot_imputed_ggpairs
vaeac_train_model
vaeac_train_model_continue

Index

compute_vS

Description

Computes v(S) for all features subsets S.

Usage

```
compute_vS(internal, model, predict_model, method = "future")
```

Arguments

internal	List. Holds all parameters, data, functions and computed objects used within explain() The list contains one or more of the elements parameters, data, objects, output.
model	Objects. The model object that ought to be explained. See the documentation of explain() for details.
predict_model	Function. The prediction function used when model is not natively supported. See the documentation of explain() for details.
method	Character Indicates whether the lappy method (default) or loop method should be used.
explain	Explain the output of machine learning models with more accurately estimated Shapley values

Description

Computes dependence-aware Shapley values for observations in x_explain from the specified model by using the method specified in approach to estimate the conditional expectation.

Usage

```
explain(
  model,
  x_explain,
  x_train,
  approach,
  prediction_zero,
  n_combinations = NULL,
  group = NULL,
  n_samples = 1000,
  n_batches = NULL,
```

```
seed = 1,
keep_samp_for_vS = FALSE,
predict_model = NULL,
get_model_specs = NULL,
MSEv_uniform_comb_weights = TRUE,
timing = TRUE,
verbose = 0,
....)
```

Arguments

model	The model whose predictions we want to explain. Run get_supported_models() for a table of which models explain supports natively. Unsupported models can still be explained by passing predict_model and (optionally) get_model_specs, see details for more information.	
x_explain	A matrix or data.frame/data.table. Contains the the features, whose predictions ought to be explained.	
x_train	Matrix or data.frame/data.table. Contains the data used to estimate the (condi- tional) distributions for the features needed to properly estimate the conditional expectations in the Shapley formula.	
approach	Character vector of length 1 or one less than the number of features. All ele- ments should, either be "gaussian", "copula", "empirical", "ctree", "vaeac", "categorical", "timeseries", "independence", "regression_separate", or "regression_surrogate". The two regression approaches can not be com- bined with any other approach. See details for more information.	
prediction_zero)	
	Numeric. The prediction value for unseen data, i.e. an estimate of the expected prediction without conditioning on any features. Typically we set this value equal to the mean of the response variable in our training data, but other choices such as the mean of the predictions in the training data are also reasonable.	
n_combinations	Integer. If group = NULL, n_combinations represents the number of unique fea- ture combinations to sample. If group != NULL, n_combinations represents the number of unique group combinations to sample. If n_combinations = NULL, the exact method is used and all combinations are considered. The maximum number of combinations equals 2^m, where m is the number of features.	
group	List. If NULL regular feature wise Shapley values are computed. If provided, group wise Shapley values are computed. group then has length equal to the number of groups. The list element contains character vectors with the features included in each of the different groups.	
n_samples	Positive integer. Indicating the maximum number of samples to use in the Monte Carlo integration for every conditional expectation. See also details.	
n_batches	Positive integer (or NULL). Specifies how many batches the total number of fea- ture combinations should be split into when calculating the contribution function for each test observation. The default value is NULL which uses a reasonable trade-off between RAM allocation and computation speed, which depends on	

	approach and n_combinations. For models with many features, increasing the number of batches reduces the RAM allocation significantly. This typically comes with a small increase in computation time.
seed	Positive integer. Specifies the seed before any randomness based code is being run. If NULL the seed will be inherited from the calling environment.
keep_samp_for	_vS
	Logical. Indicates whether the samples used in the Monte Carlo estimation of v_S should be returned (in internal\$output)
predict_model	Function. The prediction function used when model is not natively supported. (Run get_supported_models() for a list of natively supported models.) The function must have two arguments, model and newdata which specify, respec- tively, the model and a data.frame/data.table to compute predictions for. The function must give the prediction as a numeric vector. NULL (the default) uses functions specified internally. Can also be used to override the default function for natively supported model classes.
<pre>get_model_spe</pre>	CS
	Function. An optional function for checking model/data consistency when model is not natively supported. (Run get_supported_models() for a list of natively supported models.) The function takes model as argument and provides a list with 3 elements:
	labels Character vector with the names of each feature.
	classes Character vector with the classes of each features.
	factor_levels Character vector with the levels for any categorical features.
	If NULL (the default) internal functions are used for natively supported model classes, and the checking is disabled for unsupported model classes. Can also be used to override the default function for natively supported model classes.
MSEv uniform	comb weights
	Logical. If TRUE (default), then the function weights the combinations uniformly when computing the MSEv criterion. If FALSE, then the function use the Shapley kernel weights to weight the combinations when computing the MSEv criterion. Note that the Shapley kernel weights are replaced by the sampling frequency when not all combinations are considered.
timing	Logical. Whether the timing of the different parts of the explain() should saved in the model object.
verbose	An integer specifying the level of verbosity. If 0, shapr will stay silent. If 1, it will print information about performance. If 2, some additional information will be printed out. Use 0 (default) for no verbosity, 1 for low verbose, and 2 for high verbose. TODO: Make this clearer when we end up fixing this and if they should force a progressr bar.
	Arguments passed on to setup_approach.empirical, setup_approach.independence, setup_approach.gaussian, setup_approach.copula, setup_approach.ctree, setup_approach.vaeac, setup_approach.categorical, setup_approach.regression_separate, setup_approach.regression_surrogate, setup_approach.timeseries
	<pre>empirical.type Character. (default = "fixed_sigma") Should be equal to ei- ther "independence", "fixed_sigma", "AICc_each_k" "AICc_full". TODO: Describe better what the methods do here.</pre>

- empirical.eta Numeric. (default = 0.95) Needs to be \emptyset < eta <= 1. Represents the minimum proportion of the total empirical weight that data samples should use. If e.g. eta = .8 we will choose the K samples with the largest weight so that the sum of the weights accounts for 80\ eta is the η parameter in equation (15) of Aas et al (2021).
- empirical.fixed_sigma Positive numeric scalar. (default = 0.1) Represents
 the kernel bandwidth in the distance computation used when conditioning on all different combinations. Only used when empirical.type =
 "fixed_sigma"
- empirical.n_samples_aicc Positive integer. (default = 1000) Number of samples to consider in AICc optimization. Only used for empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.eval_max_aicc Positive integer. (default = 20) Maximum number of iterations when optimizing the AICc. Only used for empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.start_aicc Numeric. (default = 0.1) Start value of the sigma parameter when optimizing the AICc. Only used for empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.cov_mat Numeric matrix. (Optional, default = NULL) Containing
 the covariance matrix of the data generating distribution used to define the
 Mahalanobis distance. NULL means it is estimated from x_train.

internal Not used.

- gaussian.mu Numeric vector. (Optional) Containing the mean of the data generating distribution. NULL means it is estimated from the x_train.
- gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance matrix of the data generating distribution. NULL means it is estimated from the x_train.
- ctree.mincriterion Numeric scalar or vector. (default = 0.95) Either a scalar or vector of length equal to the number of features in the model. Value is equal to 1 α where α is the nominal level of the conditional independence tests. If it is a vector, this indicates which value to use when conditioning on various numbers of features.
- ctree.minsplit Numeric scalar. (default = 20) Determines minimum value that the sum of the left and right daughter nodes required for a split.
- ctree.minbucket Numeric scalar. (default = 7) Determines the minimum sum of weights in a terminal node required for a split
- ctree.sample Boolean. (default = TRUE) If TRUE, then the method always samples n_samples observations from the leaf nodes (with replacement). If FALSE and the number of observations in the leaf node is less than n_samples, the method will take all observations in the leaf. If FALSE and the number of observations in the leaf node is more than n_samples, the method will sample n_samples observations (with replacement). This means that there will always be sampling in the leaf unless sample = FALSE AND the number of obs in the node is less than n_samples.
- vaeac.depth Positive integer (default is 3). The number of hidden layers in the neural networks of the masked encoder, full encoder, and decoder.

- vaeac.width Positive integer (default is 32). The number of neurons in each hidden layer in the neural networks of the masked encoder, full encoder, and decoder.
- vaeac.latent_dim Positive integer (default is 8). The number of dimensions in the latent space.
- vaeac.lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam() optimizer.
- vaeac.activation_function An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(), torch::nn_selu(), or torch::nn_sigmoid().
- vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of different vaeac models to initiate in the start. Pick the best performing one after vaeac.extra_parameters\$epochs_initiation_phase epochs (default is 2) and continue training that one.
- vaeac.epochs Positive integer (default is 100). The number of epochs to train the final vaeac model. This includes vaeac.extra_parameters\$epochs_initiation_phase, where the default is 2.
- vaeac.extra_parameters Named list with extra parameters to the vaeac approach. See vaeac_get_extra_para_default() for description of possible additional parameters and their default values.
- categorical.joint_prob_dt Data.table. (Optional) Containing the joint probability distribution for each combination of feature values. NULL means it is estimated from the x_train and x_explain.
- categorical.epsilon Numeric value. (Optional) If joint_probability_dt is not supplied, probabilities/frequencies are estimated using x_train. If certain observations occur in x_train and NOT in x_explain, then epsilon is used as the proportion of times that these observations occurs in the training data. In theory, this proportion should be zero, but this causes an error later in the Shapley computation.
- regression.model A tidymodels object of class model_specs. Default is a
 linear regression model, i.e., parsnip::linear_reg(). See tidymodels for
 all possible models, and see the vignette for how to add new/own models.
 Note, to make it easier to call explain() from Python, the regression.model
 parameter can also be a string specifying the model which will be parsed
 and evaluated. For example, "parsnip::rand_forest(mtry = hardhat::tune(), trees = 100,
 is also a valid input. It is essential to include the package prefix if the package is not loaded.
- regression.tune_values Either NULL (default), a data.frame/data.table/tibble, or a function. The data.frame must contain the possible hyperparameter value combinations to try. The column names must match the names of the tuneable parameters specified in regression.model. If regression.tune_values is a function, then it should take one argument x which is the training data for the current combination/coalition and returns a data.frame/data.table/tibble with the properties described above. Using a function allows the hyperparameter values to change based on the size of the combination. See the regression vignette for several examples. Note, to make it easier to call explain() from Python, the regression.tune_values can also be a

string containing an R function. For example, "function(x) return(dials::grid_regular(dial ncol(x)))), levels = 3))" is also a valid input. It is essential to include the package prefix if the package is not loaded.

- regression.vfold_cv_para Either NULL (default) or a named list containing the parameters to be sent to rsample::vfold_cv(). See the regression vignette for several examples.
- regression.recipe_func Either NULL (default) or a function that that takes in a recipes::recipe() object and returns a modified recipes::recipe() with potentially additional recipe steps. See the regression vignette for several examples. Note, to make it easier to call explain() from Python, the regression.recipe_func can also be a string containing an R function. For example, "function(recipe) return(recipes::step_ns(recipe, recipes::all_numeric_predictors(), deg_free = 2))" is also a valid input. It is essential to include the package prefix if the package is not loaded.
- regression.surrogate_n_comb Integer (default is internal\$parameters\$used_n_combinations)
 specifying the number of unique combinations/coalitions to apply to each
 training observation. Maximum allowed value is "internal\$parameters\$used_n_combinations
 2". By default, we use all coalitions, but this can take a lot of memory in
 larger dimensions. Note that by "all", we mean all coalitions chosen by
 shapr to be used. This will be all 2^{nfeatures} coalitions (minus empty and
 grand coalition) if shapr is in the exact mode. If the user sets a lower value
 than internal\$parameters\$used_n_combinations, then we sample this
 amount of unique coalitions separately for each training observations. That
 is, on average, all coalitions should be equally trained.
- timeseries.fixed_sigma_vec Numeric. (Default = 2) Represents the kernel bandwidth in the distance computation. TODO: What length should it have? 1?
- timeseries.bounds Numeric vector of length two. (Default = c(NULL, NULL))
 If one or both of these bounds are not NULL, we restrict the sampled time
 series to be between these bounds. This is useful if the underlying time
 series are scaled between 0 and 1, for example.

Details

The most important thing to notice is that shapr has implemented eight different Monte Carlobased approaches for estimating the conditional distributions of the data, namely "empirical", "gaussian", "copula", "ctree", "vaeac", "categorical", "timeseries", and "independence". shapr has also implemented two regression-based approaches "regression_separate" and "regression_surrogate", and see the separate vignette on the regression-based approaches for more information. In addition, the user also has the option of combining the different Monte Carlo-based approaches. E.g., if you're in a situation where you have trained a model that consists of 10 features, and you'd like to use the "gaussian" approach when you condition on a single feature, the "empirical" approach if you condition on 2-5 features, and "copula" version if you condition on more than 5 features this can be done by simply passing approach = c("gaussian", rep("empirical", 4), rep("copula", 4)). If "approach[i]" = "gaussian" means that you'd like to use the "gaussian" approach when conditioning on i features. Conditioning on all features needs no approach as that is given by the complete prediction itself, and should thus not be part of the vector.

explain

For approach="ctree", n_samples corresponds to the number of samples from the leaf node (see an exception related to the sample argument). For approach="empirical", n_samples is the *K* parameter in equations (14-15) of Aas et al. (2021), i.e. the maximum number of observations (with largest weights) that is used, see also the empirical.eta argument.

Value

Object of class c("shapr", "list"). Contains the following items:

shapley_values data.table with the estimated Shapley values

internal List with the different parameters, data and functions used internally

pred_explain Numeric vector with the predictions for the explained observations

MSEv List with the values of the MSEv evaluation criterion for the approach.

shapley_values is a data.table where the number of rows equals the number of observations you'd like to explain, and the number of columns equals m +1, where m equals the total number of features in your model.

If shapley_values[i, j + 1] > 0 it indicates that the j-th feature increased the prediction for the i-th observation. Likewise, if shapley_values[i, j + 1] < 0 it indicates that the j-th feature decreased the prediction for the i-th observation. The magnitude of the value is also important to notice. E.g. if shapley_values[i, k + 1] and shapley_values[i, j + 1] are greater than 0, where j != k, and shapley_values[i, k + 1] > shapley_values[i, j + 1] this indicates that feature j and k both increased the value of the prediction, but that the effect of the k-th feature was larger than the j-th feature.

The first column in dt, called none, is the prediction value not assigned to any of the features (ϕ_0). It's equal for all observations and set by the user through the argument prediction_zero. The difference between the prediction and none is distributed among the other features. In theory this value should be the expected prediction without conditioning on any features. Typically we set this value equal to the mean of the response variable in our training data, but other choices such as the mean of the predictions in the training data are also reasonable.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

Aas, K., Jullum, M., & L<U+00F8>land, A. (2021). Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.

Examples

```
# Load example data
data("airquality")
airquality <- airquality[complete.cases(airquality), ]
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"</pre>
```

```
# Split data into test- and training data
data_train <- head(airquality, -3)</pre>
data_explain <- tail(airquality, 3)</pre>
x_train <- data_train[, x_var]</pre>
x_explain <- data_explain[, x_var]</pre>
# Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))</pre>
model <- lm(lm_formula, data = data_train)</pre>
# Explain predictions
p <- mean(data_train[, y_var])</pre>
# Empirical approach
explain1 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "empirical",
  prediction_zero = p,
  n_samples = 1e2
)
# Gaussian approach
explain2 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "gaussian",
  prediction_zero = p,
  n_samples = 1e2
)
# Gaussian copula approach
explain3 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "copula",
  prediction_zero = p,
  n_samples = 1e2
)
# ctree approach
explain4 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "ctree",
  prediction_zero = p,
  n_samples = 1e2
)
```

explain

```
# Combined approach
approach <- c("gaussian", "gaussian", "empirical")</pre>
explain5 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = approach,
  prediction_zero = p,
  n_samples = 1e2
)
# Print the Shapley values
print(explain1$shapley_values)
# Plot the results
if (requireNamespace("ggplot2", quietly = TRUE)) {
  plot(explain1)
  plot(explain1, plot_type = "waterfall")
}
# Group-wise explanations
group_list <- list(A = c("Temp", "Month"), B = c("Wind", "Solar.R"))</pre>
explain_groups <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_train = x_train,
  group = group_list,
  approach = "empirical",
  prediction_zero = p,
  n_samples = 1e2
)
print(explain_groups$shapley_values)
# Separate and surrogate regression approaches with linear regression models.
# More complex regression models can be used, and we can use CV to
# tune the hyperparameters of the regression models and preprocess
# the data before sending it to the model. See the regression vignette
# (Shapley value explanations using the regression paradigm) for more
# details about the `regression_separate` and `regression_surrogate` approaches.
explain_separate_lm <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  prediction_zero = p,
  approach = "regression_separate",
  regression.model = parsnip::linear_reg()
)
explain_surrogate_lm <- explain(</pre>
  model = model,
  x_explain = x_explain,
```

```
x_train = x_train,
prediction_zero = p,
approach = "regression_surrogate",
regression.model = parsnip::linear_reg()
)
```

explain_forecast Explain a forecast from a time series model using Shapley values.

Description

Computes dependence-aware Shapley values for observations in explain_idx from the specified model by using the method specified in approach to estimate the conditional expectation.

Usage

```
explain_forecast(
 model,
 у,
 xreg = NULL,
  train_idx = NULL,
  explain_idx,
  explain_y_lags,
  explain_xreg_lags = explain_y_lags,
  horizon,
  approach,
 prediction_zero,
  n_combinations = NULL,
  group_lags = TRUE,
  group = NULL,
  n_{samples} = 1000,
  n_batches = NULL,
  seed = 1,
  keep_samp_for_vS = FALSE,
  predict_model = NULL,
  get_model_specs = NULL,
  timing = TRUE,
  verbose = 0,
  . . .
```

```
)
```

Arguments

model

The model whose predictions we want to explain. Run get_supported_models() for a table of which models explain supports natively. Unsupported models can still be explained by passing predict_model and (optionally) get_model_specs, see details for more information.

У	Matrix, data.frame/data.table or a numeric vector. Contains the endogenous variables used to estimate the (conditional) distributions needed to properly estimate the conditional expectations in the Shapley formula including the observations to be explained.			
xreg	Matrix, data.frame/data.table or a numeric vector. Contains the exogenous variables used to estimate the (conditional) distributions needed to properly estimate the conditional expectations in the Shapley formula including the observations to be explained. As exogenous variables are used contemporaneusly when producing a forecast, this item should contain $nrow(y) + horizon rows$.			
train_idx	Numeric vector The row indices in data and reg denoting points in time to use when estimating the conditional expectations in the Shapley value formula. If train_idx = NULL (default) all indices not selected to be explained will be used.			
explain_idx	Numeric vector The row indices in data and reg denoting points in time to explain.			
explain_y_lags	Numeric vector. Denotes the number of lags that should be used for each variable in y when making a forecast.			
explain_xreg_la	ags			
	Numeric vector. If $xreg != NULL$, denotes the number of lags that should be used for each variable in $xreg$ when making a forecast.			
horizon	Numeric. The forecast horizon to explain. Passed to the predict_model function.			
approach	Character vector of length 1 or one less than the number of features. All ele- ments should, either be "gaussian", "copula", "empirical", "ctree", "vaeac", "categorical", "timeseries", "independence", "regression_separate", or "regression_surrogate". The two regression approaches can not be com- bined with any other approach. See details for more information.			
prediction_zero	prediction zero			
	Numeric. The prediction value for unseen data, i.e. an estimate of the expected prediction without conditioning on any features. Typically we set this value equal to the mean of the response variable in our training data, but other choices such as the mean of the predictions in the training data are also reasonable.			
n_combinations	Integer. If group = NULL, n_combinations represents the number of unique fea- ture combinations to sample. If group != NULL, n_combinations represents the number of unique group combinations to sample. If n_combinations = NULL, the exact method is used and all combinations are considered. The maximum number of combinations equals 2 ^m , where m is the number of features.			
group_lags	Logical. If TRUE all lags of each variable are grouped together and explained as a group. If FALSE all lags of each variable are explained individually.			
group	List. If NULL regular feature wise Shapley values are computed. If provided, group wise Shapley values are computed. group then has length equal to the number of groups. The list element contains character vectors with the features included in each of the different groups.			
n_samples	Positive integer. Indicating the maximum number of samples to use in the Monte Carlo integration for every conditional expectation. See also details.			

n_batches	Positive integer (or NULL). Specifies how many batches the total number of fea- ture combinations should be split into when calculating the contribution function for each test observation. The default value is NULL which uses a reasonable trade-off between RAM allocation and computation speed, which depends on approach and n_combinations. For models with many features, increasing the number of batches reduces the RAM allocation significantly. This typically comes with a small increase in computation time.
seed	Positive integer. Specifies the seed before any randomness based code is being run. If NULL the seed will be inherited from the calling environment.
keep_samp_for_v	vS
	Logical. Indicates whether the samples used in the Monte Carlo estimation of v_S should be returned (in internal\$output)
predict_model	Function. The prediction function used when model is not natively supported. (Run get_supported_models() for a list of natively supported models.) The function must have two arguments, model and newdata which specify, respec- tively, the model and a data.frame/data.table to compute predictions for. The function must give the prediction as a numeric vector. NULL (the default) uses functions specified internally. Can also be used to override the default function for natively supported model classes.
<pre>get_model_specs</pre>	S
	Function. An optional function for checking model/data consistency when model is not natively supported. (Run get_supported_models() for a list of natively supported models.) The function takes model as argument and provides a list with 3 elements:
	labels Character vector with the names of each feature.
	classes Character vector with the classes of each features.
	factor_levels Character vector with the levels for any categorical features.
	If NULL (the default) internal functions are used for natively supported model classes, and the checking is disabled for unsupported model classes. Can also be used to override the default function for natively supported model classes.
timing	Logical. Whether the timing of the different parts of the explain() should saved in the model object.
verbose	An integer specifying the level of verbosity. If \emptyset , shapr will stay silent. If 1, it will print information about performance. If 2, some additional information will be printed out. Use \emptyset (default) for no verbosity, 1 for low verbose, and 2 for high verbose. TODO: Make this clearer when we end up fixing this and if they should force a progressr bar.
	Arguments passed on to setup_approach.empirical, setup_approach.independence, setup_approach.gaussian, setup_approach.copula, setup_approach.ctree, setup_approach.vaeac, setup_approach.categorical, setup_approach.timeseries
	<pre>empirical.type Character. (default = "fixed_sigma") Should be equal to ei- ther "independence", "fixed_sigma", "AICc_each_k" "AICc_full". TODO: Describe better what the methods do here.</pre>
	empirical.eta Numeric. (default = 0.95) Needs to be $0 < \text{eta} <= 1$. Represents the minimum proportion of the total empirical weight that data samples should use. If e.g. eta = .8 we will choose the K samples with the

largest weight so that the sum of the weights accounts for 80\ eta is the η parameter in equation (15) of Aas et al (2021).

- empirical.fixed_sigma Positive numeric scalar. (default = 0.1) Represents
 the kernel bandwidth in the distance computation used when conditioning on all different combinations. Only used when empirical.type =
 "fixed_sigma"
- empirical.n_samples_aicc Positive integer. (default = 1000) Number of samples to consider in AICc optimization. Only used for empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.eval_max_aicc Positive integer. (default = 20) Maximum number of iterations when optimizing the AICc. Only used for empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.start_aicc Numeric. (default = 0.1) Start value of the sigma parameter when optimizing the AICc. Only used for empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.cov_mat Numeric matrix. (Optional, default = NULL) Containing
 the covariance matrix of the data generating distribution used to define the
 Mahalanobis distance. NULL means it is estimated from x_train.

internal Not used.

- gaussian.mu Numeric vector. (Optional) Containing the mean of the data generating distribution. NULL means it is estimated from the x_train.
- gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance matrix of the data generating distribution. NULL means it is estimated from the x_train.
- ctree.mincriterion Numeric scalar or vector. (default = 0.95) Either a scalar or vector of length equal to the number of features in the model. Value is equal to 1 α where α is the nominal level of the conditional independence tests. If it is a vector, this indicates which value to use when conditioning on various numbers of features.
- ctree.minsplit Numeric scalar. (default = 20) Determines minimum value that the sum of the left and right daughter nodes required for a split.
- ctree.minbucket Numeric scalar. (default = 7) Determines the minimum sum of weights in a terminal node required for a split
- ctree.sample Boolean. (default = TRUE) If TRUE, then the method always samples n_samples observations from the leaf nodes (with replacement). If FALSE and the number of observations in the leaf node is less than n_samples, the method will take all observations in the leaf. If FALSE and the number of observations in the leaf node is more than n_samples, the method will sample n_samples observations (with replacement). This means that there will always be sampling in the leaf unless sample = FALSE AND the number of obs in the node is less than n_samples.
- vaeac.depth Positive integer (default is 3). The number of hidden layers in the neural networks of the masked encoder, full encoder, and decoder.
- vaeac.width Positive integer (default is 32). The number of neurons in each hidden layer in the neural networks of the masked encoder, full encoder, and decoder.

- vaeac.latent_dim Positive integer (default is 8). The number of dimensions in the latent space.
- vaeac.lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam() optimizer.
- vaeac.activation_function An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(), torch::nn_selu(), or torch::nn_sigmoid().
- vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of different vaeac models to initiate in the start. Pick the best performing one after vaeac.extra_parameters\$epochs_initiation_phase epochs (default is 2) and continue training that one.
- vaeac.epochs Positive integer (default is 100). The number of epochs to train the final vaeac model. This includes vaeac.extra_parameters\$epochs_initiation_phase, where the default is 2.
- vaeac.extra_parameters Named list with extra parameters to the vaeac approach. See vaeac_get_extra_para_default() for description of possible additional parameters and their default values.
- categorical.joint_prob_dt Data.table. (Optional) Containing the joint probability distribution for each combination of feature values. NULL means it is estimated from the x_train and x_explain.
- categorical.epsilon Numeric value. (Optional) If joint_probability_dt is not supplied, probabilities/frequencies are estimated using x_train. If certain observations occur in x_train and NOT in x_explain, then epsilon is used as the proportion of times that these observations occurs in the training data. In theory, this proportion should be zero, but this causes an error later in the Shapley computation.
- timeseries.fixed_sigma_vec Numeric. (Default = 2) Represents the kernel bandwidth in the distance computation. TODO: What length should it have? 1?
- timeseries.bounds Numeric vector of length two. (Default = c(NULL, NULL))
 If one or both of these bounds are not NULL, we restrict the sampled time
 series to be between these bounds. This is useful if the underlying time
 series are scaled between 0 and 1, for example.

Details

This function explains a forecast of length horizon. The argument train_idx is analogous to x_train in explain(), however, it just contains the time indices of where in the data the forecast should start for each training sample. In the same way explain_idx defines the time index (indices) which will precede a forecast to be explained.

As any autoregressive forecast model will require a set of lags to make a forecast at an arbitrary point in time, explain_y_lags and explain_xreg_lags define how many lags are required to "refit" the model at any given time index. This allows the different approaches to work in the same way they do for time-invariant models.

Value

```
Object of class c("shapr", "list"). Contains the following items:
```

shapley_values data.table with the estimated Shapley values

internal List with the different parameters, data and functions used internally

pred_explain Numeric vector with the predictions for the explained observations

MSEv List with the values of the MSEv evaluation criterion for the approach.

shapley_values is a data.table where the number of rows equals the number of observations you'd like to explain, and the number of columns equals m +1, where m equals the total number of features in your model.

If shapley_values[i, j + 1] > 0 it indicates that the j-th feature increased the prediction for the i-th observation. Likewise, if shapley_values[i, j + 1] < 0 it indicates that the j-th feature decreased the prediction for the i-th observation. The magnitude of the value is also important to notice. E.g. if shapley_values[i, k + 1] and shapley_values[i, j + 1] are greater than 0, where j != k, and shapley_values[i, k + 1] > shapley_values[i, j + 1] this indicates that feature j and k both increased the value of the prediction, but that the effect of the k-th feature was larger than the j-th feature.

The first column in dt, called none, is the prediction value not assigned to any of the features (ϕ_0). It's equal for all observations and set by the user through the argument prediction_zero. The difference between the prediction and none is distributed among the other features. In theory this value should be the expected prediction without conditioning on any features. Typically we set this value equal to the mean of the response variable in our training data, but other choices such as the mean of the predictions in the training data are also reasonable.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

Aas, K., Jullum, M., & L<U+00F8>land, A. (2021). Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.

Examples

```
# Load example data
data("airquality")
data <- data.table::as.data.table(airquality)
# Fit an AR(2) model.
model_ar_temp <- ar(data$Temp, order = 2)
# Calculate the zero prediction values for a three step forecast.
p0_ar <- rep(mean(data$Temp), 3)
# Empirical approach, explaining forecasts starting at T = 152 and T = 153.
explain_forecast(
    model = model_ar_temp,
    y = data[, "Temp"],
    train_idx = 2:151,
```

```
explain_idx = 152:153,
explain_y_lags = 2,
horizon = 3,
approach = "empirical",
prediction_zero = p0_ar,
group_lags = FALSE
```

explain_tripledot_docs

Documentation of the approach-specific parameters in explain()

Description

)

This helper function displays the specific arguments applicable to the different approaches. Note that when calling explain() from Python, the parameters are renamed from the form approach.parameter_name to approach_parameter_name. That is, an underscore has replaced the dot as the dot is reserved in Python.

Usage

explain_tripledot_docs(...)

Arguments

. . .

Arguments passed on to setup_approach.independence, setup_approach.empirical,
<pre>setup_approach.categorical,setup_approach.copula,setup_approach.ctree,</pre>
<pre>setup_approach.gaussian, setup_approach.regression_separate, setup_approach.regression</pre>
<pre>setup_approach.timeseries, setup_approach.vaeac</pre>

- empirical.type Character. (default = "fixed_sigma") Should be equal to either "independence", "fixed_sigma", "AICc_each_k" "AICc_full". TODO: Describe better what the methods do here.
- empirical.eta Numeric. (default = 0.95) Needs to be $\emptyset <$ eta <=1. Represents the minimum proportion of the total empirical weight that data samples should use. If e.g. eta = .8 we will choose the K samples with the largest weight so that the sum of the weights accounts for 80\ eta is the η parameter in equation (15) of Aas et al (2021).
- empirical.fixed_sigma Positive numeric scalar. (default = 0.1) Represents
 the kernel bandwidth in the distance computation used when conditioning on all different combinations. Only used when empirical.type =
 "fixed_sigma"
- empirical.n_samples_aicc Positive integer. (default = 1000) Number of samples to consider in AICc optimization. Only used for empirical.type is either "AICc_each_k" or "AICc_full".

- empirical.eval_max_aicc Positive integer. (default = 20) Maximum number of iterations when optimizing the AICc. Only used for empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.start_aicc Numeric. (default = 0.1) Start value of the sigma parameter when optimizing the AICc. Only used for empirical.type is either "AICc_each_k" or "AICc_full".
- empirical.cov_mat Numeric matrix. (Optional, default = NULL) Containing
 the covariance matrix of the data generating distribution used to define the
 Mahalanobis distance. NULL means it is estimated from x_train.
- categorical.joint_prob_dt Data.table. (Optional) Containing the joint probability distribution for each combination of feature values. NULL means it is estimated from the x_train and x_explain.
- categorical.epsilon Numeric value. (Optional) If joint_probability_dt is not supplied, probabilities/frequencies are estimated using x_train. If certain observations occur in x_train and NOT in x_explain, then epsilon is used as the proportion of times that these observations occurs in the training data. In theory, this proportion should be zero, but this causes an error later in the Shapley computation.
- ctree.mincriterion Numeric scalar or vector. (default = 0.95) Either a scalar or vector of length equal to the number of features in the model. Value is equal to 1 α where α is the nominal level of the conditional independence tests. If it is a vector, this indicates which value to use when conditioning on various numbers of features.
- ctree.minsplit Numeric scalar. (default = 20) Determines minimum value that the sum of the left and right daughter nodes required for a split.
- ctree.minbucket Numeric scalar. (default = 7) Determines the minimum sum of weights in a terminal node required for a split
- ctree.sample Boolean. (default = TRUE) If TRUE, then the method always samples n_samples observations from the leaf nodes (with replacement). If FALSE and the number of observations in the leaf node is less than n_samples, the method will take all observations in the leaf. If FALSE and the number of observations in the leaf node is more than n_samples, the method will sample n_samples observations (with replacement). This means that there will always be sampling in the leaf unless sample = FALSE AND the number of obs in the node is less than n_samples.
- gaussian.mu Numeric vector. (Optional) Containing the mean of the data generating distribution. NULL means it is estimated from the x_train.
- gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance matrix of the data generating distribution. NULL means it is estimated from the x_train.
- regression.model A tidymodels object of class model_specs. Default is a
 linear regression model, i.e., parsnip::linear_reg(). See tidymodels for
 all possible models, and see the vignette for how to add new/own models.
 Note, to make it easier to call explain() from Python, the regression.model
 parameter can also be a string specifying the model which will be parsed
 and evaluated. For example, "parsnip::rand_forest(mtry = hardhat::tune(), trees = 100,

is also a valid input. It is essential to include the package prefix if the package is not loaded.

- regression.tune_values Either NULL (default), a data.frame/data.table/tibble, or a function. The data.frame must contain the possible hyperparameter value combinations to try. The column names must match the names of the tuneable parameters specified in regression.model. If regression.tune_values is a function, then it should take one argument x which is the training data for the current combination/coalition and returns a data.frame/data.table/tibble with the properties described above. Using a function allows the hyperparameter values to change based on the size of the combination. See the regression vignette for several examples. Note, to make it easier to call explain() from Python, the regression.tune_values can also be a string containing an R function. For example, "function(x) return(dials::grid_regular(dial ncol(x)))), levels = 3))" is also a valid input. It is essential to include the package prefix if the package is not loaded.
- regression.vfold_cv_para Either NULL (default) or a named list containing the parameters to be sent to rsample::vfold_cv(). See the regression vignette for several examples.
- regression.recipe_func Either NULL (default) or a function that that takes in a recipes::recipe() object and returns a modified recipes::recipe() with potentially additional recipe steps. See the regression vignette for several examples. Note, to make it easier to call explain() from Python, the regression.recipe_func can also be a string containing an R function. For example, "function(recipe) return(recipes::step_ns(recipe, recipes::all_numeric_predictors(), deg_free = 2))" is also a valid input. It is essential to include the package prefix if the package is not loaded.
- regression.surrogate_n_comb Integer (default is internal\$parameters\$used_n_combinations) specifying the number of unique combinations/coalitions to apply to each training observation. Maximum allowed value is "internal\$parameters\$used_n_combinations 2". By default, we use all coalitions, but this can take a lot of memory in larger dimensions. Note that by "all", we mean all coalitions chosen by shapr to be used. This will be all 2^{n_{features}} coalitions (minus empty and grand coalition) if shapr is in the exact mode. If the user sets a lower value than internal\$parameters\$used_n_combinations, then we sample this amount of unique coalitions should be equally trained.
- timeseries.fixed_sigma_vec Numeric. (Default = 2) Represents the kernel bandwidth in the distance computation. TODO: What length should it have? 1?
- timeseries.bounds Numeric vector of length two. (Default = c(NULL, NULL))
 If one or both of these bounds are not NULL, we restrict the sampled time
 series to be between these bounds. This is useful if the underlying time
 series are scaled between 0 and 1, for example.
- vaeac.depth Positive integer (default is 3). The number of hidden layers in the neural networks of the masked encoder, full encoder, and decoder.
- vaeac.width Positive integer (default is 32). The number of neurons in each hidden layer in the neural networks of the masked encoder, full encoder,

and decoder.

- vaeac.latent_dim Positive integer (default is 8). The number of dimensions in the latent space.
- vaeac.lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam() optimizer.
- vaeac.activation_function An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(), torch::nn_selu(), or torch::nn_sigmoid().
- vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of different vaeac models to initiate in the start. Pick the best performing one after vaeac.extra_parameters\$epochs_initiation_phase epochs (default is 2) and continue training that one.
- vaeac.epochs Positive integer (default is 100). The number of epochs to train the final vaeac model. This includes vaeac.extra_parameters\$epochs_initiation_phase, where the default is 2.
- vaeac.extra_parameters Named list with extra parameters to the vaeac approach. See vaeac_get_extra_para_default() for description of possible additional parameters and their default values.

Author(s)

Lars Henry Berge Olsen and Martin Jullum

feature_combinations	Define feature combinations,	and fetch	additional	information	about
	each unique combination				

Description

Define feature combinations, and fetch additional information about each unique combination

Usage

```
feature_combinations(
    m,
    exact = TRUE,
    n_combinations = 200,
    weight_zero_m = 10^6,
    group_num = NULL
)
```

Arguments

m	Positive integer. Total number of features.
exact	Logical. If TRUE all 2 ^m combinations are generated, otherwise a subsample of
	the combinations is used.

1 11

. .

n_combinations	Positive integer. Note that if exact = TRUE, n_combinations is ignored. However, if $m > 12$ you'll need to add a positive integer value for n_combinations.
weight_zero_m	Numeric. The value to use as a replacement for infinite combination weights when doing numerical operations.
group_num	List. Contains vector of integers indicating the feature numbers for the different groups.

Value

A data.table that contains the following columns:

- id_combination Positive integer. Represents a unique key for each combination. Note that the table is sorted by id_combination, so that is always equal to x[["id_combination"]] = 1:nrow(x).
- features List. Each item of the list is an integer vector where features[[i]] represents the indices of the features included in combination i. Note that all the items are sorted such that features[[i]] == sort(features[[i]]) is always true.
- **n_features** Vector of positive integers. n_features[i] equals the number of features in combination i, i.e. n_features[i] = length(features[[i]])..
- N Positive integer. The number of unique ways to sample n_features[i] features from m different features, without replacement.

Author(s)

Nikolai Sellereite, Martin Jullum

Examples

```
# All combinations
x <- feature_combinations(m = 3)</pre>
nrow(x) # Equals 2^3 = 8
# Subsample of combinations
x <- feature_combinations(exact = FALSE, m = 10, n_combinations = 1e2)</pre>
```

finalize_explanation Computes the Shapley values given v(S)

Description

Computes dependence-aware Shapley values for observations in x_explain from the specified model by using the method specified in approach to estimate the conditional expectation.

Usage

```
finalize_explanation(vS_list, internal)
```

Arguments

vS_list	List Output from compute_vS()
internal	List. Holds all parameters, data, functions and computed objects used within explain() The list contains one or more of the elements parameters, data, objects, output.

Details

The most important thing to notice is that shapr has implemented eight different Monte Carlobased approaches for estimating the conditional distributions of the data, namely "empirical", "gaussian", "copula", "ctree", "vaeac", "categorical", "timeseries", and "independence". shapr has also implemented two regression-based approaches "regression_separate" and "regression_surrogate", and see the separate vignette on the regression-based approaches for more information. In addition, the user also has the option of combining the different Monte Carlo-based approaches. E.g., if you're in a situation where you have trained a model that consists of 10 features, and you'd like to use the "gaussian" approach when you condition on a single feature, the "empirical" approach if you condition on 2-5 features, and "copula" version if you condition on more than 5 features this can be done by simply passing approach = c("gaussian", rep("empirical", 4), rep("copula", 4)). If "approach[i]" = "gaussian" means that you'd like to use the "gaussian" approach when conditioning on i features. Conditioning on all features needs no approach as that is given by the complete prediction itself, and should thus not be part of the vector.

For approach="ctree", n_samples corresponds to the number of samples from the leaf node (see an exception related to the sample argument). For approach="empirical", n_samples is the *K* parameter in equations (14-15) of Aas et al. (2021), i.e. the maximum number of observations (with largest weights) that is used, see also the empirical.eta argument.

Value

Object of class c("shapr", "list"). Contains the following items:

shapley_values data.table with the estimated Shapley values

internal List with the different parameters, data and functions used internally

pred_explain Numeric vector with the predictions for the explained observations

MSEv List with the values of the MSEv evaluation criterion for the approach.

shapley_values is a data.table where the number of rows equals the number of observations you'd like to explain, and the number of columns equals m +1, where m equals the total number of features in your model.

If shapley_values[i, j + 1] > 0 it indicates that the j-th feature increased the prediction for the i-th observation. Likewise, if shapley_values[i, j + 1] < 0 it indicates that the j-th feature decreased the prediction for the i-th observation. The magnitude of the value is also important to notice. E.g. if shapley_values[i, k + 1] and shapley_values[i, j + 1] are greater than 0, where j != k, and shapley_values[i, k + 1] > shapley_values[i, j + 1] this indicates that feature j and k both increased the value of the prediction, but that the effect of the k-th feature was larger than the j-th feature.

The first column in dt, called none, is the prediction value not assigned to any of the features (ϕ_0). It's equal for all observations and set by the user through the argument prediction_zero. The

difference between the prediction and none is distributed among the other features. In theory this value should be the expected prediction without conditioning on any features. Typically we set this value equal to the mean of the response variable in our training data, but other choices such as the mean of the predictions in the training data are also reasonable.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

Aas, K., Jullum, M., & L<U+00F8>land, A. (2021). Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.

Examples

```
# Load example data
data("airquality")
airquality <- airquality[complete.cases(airquality), ]</pre>
x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
y_var <- "Ozone"</pre>
# Split data into test- and training data
data_train <- head(airquality, -3)</pre>
data_explain <- tail(airquality, 3)</pre>
x_train <- data_train[, x_var]</pre>
x_explain <- data_explain[, x_var]</pre>
# Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))</pre>
model <- lm(lm_formula, data = data_train)</pre>
# Explain predictions
p <- mean(data_train[, y_var])</pre>
# Empirical approach
explain1 <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_{train} = x_{train}
  approach = "empirical",
  prediction_zero = p,
  n_samples = 1e2
)
# Gaussian approach
explain2 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
```

```
approach = "gaussian",
  prediction_zero = p,
  n_samples = 1e2
)
# Gaussian copula approach
explain3 <- explain(</pre>
  model = model,
  x_{explain} = x_{explain}
  x_train = x_train,
  approach = "copula",
  prediction_zero = p,
  n_samples = 1e2
)
# ctree approach
explain4 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "ctree",
  prediction_zero = p,
  n_samples = 1e2
)
# Combined approach
approach <- c("gaussian", "gaussian", "empirical")</pre>
explain5 <- explain(</pre>
 model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = approach,
  prediction_zero = p,
  n_samples = 1e2
)
# Print the Shapley values
print(explain1$shapley_values)
# Plot the results
if (requireNamespace("ggplot2", quietly = TRUE)) {
  plot(explain1)
  plot(explain1, plot_type = "waterfall")
}
# Group-wise explanations
group_list <- list(A = c("Temp", "Month"), B = c("Wind", "Solar.R"))</pre>
explain_groups <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  group = group_list,
```

```
approach = "empirical",
 prediction_zero = p,
 n_samples = 1e2
)
print(explain_groups$shapley_values)
# Separate and surrogate regression approaches with linear regression models.
# More complex regression models can be used, and we can use CV to
# tune the hyperparameters of the regression models and preprocess
# the data before sending it to the model. See the regression vignette
# (Shapley value explanations using the regression paradigm) for more
# details about the `regression_separate` and `regression_surrogate` approaches.
explain_separate_lm <- explain(</pre>
 model = model,
 x_explain = x_explain,
 x_train = x_train,
 prediction_zero = p,
 approach = "regression_separate",
 regression.model = parsnip::linear_reg()
)
explain_surrogate_lm <- explain(</pre>
 model = model,
 x_explain = x_explain,
 x_train = x_train,
 prediction_zero = p,
 approach = "regression_surrogate",
 regression.model = parsnip::linear_reg()
)
```

get_cov_mat get_cov_mat

Description

get_cov_mat

Usage

```
get_cov_mat(x_train, min_eigen_value = 1e-06)
```

Arguments

x_train	Matrix or data.frame/data.table. Contains the data used to estimate the (condi-
	tional) distributions for the features needed to properly estimate the conditional
	expectations in the Shapley formula.
<pre>min_eigen_value</pre>	2
	Numeric Specifies the smallest allowed eigen value before the covariance matrix
	of x_train is assumed to not be positive definite, and Matrix::nearPD() is
	used to find the nearest one.

Description

Set up data for explain_forecast

Usage

```
get_data_forecast(
   y,
   xreg,
   train_idx,
   explain_idx,
   explain_y_lags,
   explain_xreg_lags,
   horizon
)
```

Arguments

У	A matrix or numeric vector containing the endogenous variables for the model. One variable per column, one observation per row.	
xreg	A matrix containing exogenous regressors for the model. One variable per col- umn, one observation per row. Should have nrow(data) + horizon rows.	
train_idx	The observations indices in data to use as training examples.	
explain_idx	The observations indices in data to explain.	
explain_y_lags	Numeric vector Indicates the number of lags of y to include in the explanation.	
explain_xreg_lags		
	Numeric vector Indicates the number of lags of xreg to include in the explanation.	
horizon	The forecast horizon to explain.	

Value

A list containing

- The data.frames x_train and x_explain which holds the lagged data examples.
- A numeric, n_endo denoting how many columns are endogenous in x_train and x_explain.
- A list, group with groupings of each variable to explain per variable and not per variable and lag.

get_mu_vec get_mu_vec

Description

get_mu_vec

Usage

get_mu_vec(x_train)

Arguments

x_train Matrix or data.frame/data.table. Contains the data used to estimate the (conditional) distributions for the features needed to properly estimate the conditional expectations in the Shapley formula.

get_supported_approaches

Gets the implemented approaches

Description

Gets the implemented approaches

Usage

get_supported_approaches()

Value

Character vector. The names of the implemented approaches that can be passed to argument approach in explain().

lag_data

Description

Lag a matrix of variables a specific number of lags for each variables.

Usage

```
lag_data(x, lags)
```

Arguments

х	The matrix of variables (one variable per column).
lags	A numeric vector denoting how many lags each variable should have

Value

A list with two items

- A matrix, lagged with the lagged data.
- A list, group, with groupings of the lagged data per variable.

plot.shapr

Plot of the Shapley value explanations

Description

Plots the individual prediction explanations.

Usage

```
## S3 method for class 'shapr'
plot(
    x,
    plot_type = "bar",
    digits = 3,
    index_x_explain = NULL,
    top_k_features = NULL,
    col = NULL,
    bar_plot_phi0 = TRUE,
    bar_plot_order = "largest_first",
    scatter_features = NULL,
    scatter_hist = TRUE,
    ...
)
```

Arguments

х	An shapr object. The output from explain().
plot_type	Character. Specifies the type of plot to produce. "bar" (the default) gives a reg- ular horizontal bar plot of the Shapley value magnitudes. "waterfall" gives a waterfall plot indicating the changes in the prediction score due to each features contribution (their Shapley values). "scatter" plots the feature values on the x- axis and Shapley values on the y-axis, as well as (optionally) a background scat- ter_hist showing the distribution of the feature data. "beeswarm" summarises the distribution of the Shapley values along the x-axis for all the features. Each point gives the shapley value of a given instance, where the points are colored by the feature value of that instance.
digits	Integer. Number of significant digits to use in the feature description. Applicable for plot_type "bar" and "waterfall"
index_x_explair	l
	Integer vector. Which of the test observations to plot. E.g. if you have explained 10 observations using explain(), you can generate a plot for the first 5 observations by setting index_x_explain = 1:5.
top_k_features	Integer. How many features to include in the plot. E.g. if you have 15 features in your model you can plot the 5 most important features, for each explanation, by setting top_k_features = 1:5. Applicable for plot_type "bar" and "waterfall"
col	Character vector (length depends on plot type). The color codes (hex codes or other names understood by ggplot2::ggplot()) for positive and negative Shapley values, respectively. The default is col=NULL, plotting with the de- fault colors respective to the plot type. For plot_type = "bar" and plot_type = "waterfall", the default is c("#00BA38", "#F8766D"). For plot_type = "beeswarm", the default is c("#F8766D", "yellow", "#00BA38"). For plot_type = "scatter", the default is "#619CFF". If you want to alter the colors i the plot, the length of the col vector depends on plot type. For plot_type = "bar" or plot_type = "waterfall", two colors should be provided, first for positive and then for negative Shapley values. For plot_type = "beeswarm", either two or three colors can be given. If two colors are given, then the first color determines the color of points with high feature values will have, and the second determines the color of points with low feature
	second colors mid-range feature values, and the third colors high feature values, the second colors mid-range feature values, and the third colors low feature values. For instance, $col = c("red", "yellow", "blue")$ will make high values red, mid-range values yellow, and low values blue. For plot_type = "scatter", a single color is to be given, which determines the color of the points on the scatter plot.
bar_plot_phi0	Logical. Whether to include phi0 in the plot for plot_type = "bar".
bar_plot_order	Character. Specifies what order to plot the features with respect to the magni- tude of the shapley values with plot_type = "bar": "largest_first" (the de- fault) plots the features ordered from largest to smallest absolute Shapley value. "smallest_first" plots the features ordered from smallest to largest absolute Shapley value. "original" plots the features in the original order of the data table.

plot.shapr

scatter_featur	res
	Integer or character vector. Only used for plot_type = "scatter". Specifies what features to include in (scatter) plot. Can be a numerical vector indicating feature index, or a character vector, indicating the name(s) of the feature(s) to plot.
scatter_hist	Logical. Only used for plot_type = "scatter". Whether to include a scatter_hist indicating the distribution of the data when making the scatter plot. Note that the bins are scaled so that when all the bins are stacked they fit the span of the y-axis of the plot.
	Currently not used.

Details

See the examples below, or vignette("understanding_shapr", package = "shapr") for an examples of how you should use the function.

Value

ggplot object with plots of the Shapley value explanations

Author(s)

Martin Jullum, Vilde Ung

Examples

```
data("airquality")
airquality <- airquality[complete.cases(airquality), ]</pre>
x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
y_var <- "Ozone"
# Split data into test- and training data
data_train <- head(airquality, -50)</pre>
data_explain <- tail(airquality, 50)</pre>
x_train <- data_train[, x_var]</pre>
x_explain <- data_explain[, x_var]</pre>
# Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))</pre>
model <- lm(lm_formula, data = data_train)</pre>
# Explain predictions
p <- mean(data_train[, y_var])</pre>
# Empirical approach
x <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "empirical",
```

```
prediction_zero = p,
 n_samples = 1e2
)
if (requireNamespace("ggplot2", quietly = TRUE)) {
 # The default plotting option is a bar plot of the Shapley values
 # We draw bar plots for the first 4 observations
 plot(x, index_x_explain = 1:4)
 # We can also make waterfall plots
 plot(x, plot_type = "waterfall", index_x_explain = 1:4)
 # And only showing the 2 features with largest contribution
 plot(x, plot_type = "waterfall", index_x_explain = 1:4, top_k_features = 2)
 # Or scatter plots showing the distribution of the shapley values and feature values
 plot(x, plot_type = "scatter")
 # And only for a specific feature
 plot(x, plot_type = "scatter", scatter_features = "Temp")
 # Or a beeswarm plot summarising the Shapley values and feature values for all features
 plot(x, plot_type = "beeswarm")
 plot(x, plot_type = "beeswarm", col = c("red", "black")) # we can change colors
}
# Example of scatter and beeswarm plot with factor variables
airquality$Month_factor <- as.factor(month.abb[airquality$Month])</pre>
airquality <- airquality[complete.cases(airquality), ]</pre>
x_var <- c("Solar.R", "Wind", "Temp", "Month_factor")</pre>
y_var <- "Ozone"
# Split data into test- and training data
data_train <- airquality</pre>
data_explain <- tail(airquality, 50)</pre>
x_train <- data_train[, x_var]</pre>
x_explain <- data_explain[, x_var]</pre>
# Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))</pre>
model <- lm(lm_formula, data = data_train)</pre>
# Explain predictions
p <- mean(data_train[, y_var])</pre>
# Empirical approach
x <- explain(</pre>
 model = model,
 x_explain = x_explain,
 x_train = x_train,
 approach = "ctree",
 prediction_zero = p,
 n_samples = 1e2
)
```

```
if (requireNamespace("ggplot2", quietly = TRUE)) {
   plot(x, plot_type = "scatter")
   plot(x, plot_type = "beeswarm")
}
```

plot_MSEv_eval_crit Plots of the MSEv Evaluation Criterion

Description

Make plots to visualize and compare the MSEv evaluation criterion for a list of explain() objects applied to the same data and model. The function creates bar plots and line plots with points to illustrate the overall MSEv evaluation criterion, but also for each observation/explicand and combination by only averaging over the combinations and observations/explicands, respectively.

Usage

```
plot_MSEv_eval_crit(
  explanation_list,
  index_x_explain = NULL,
  id_combination = NULL,
  CI_level = if (length(explanation_list[[1]]$pred_explain) < 20) NULL else 0.95,
  geom_col_width = 0.9,
  plot_type = "overall"
)</pre>
```

Arguments

```
explanation_list
                  A list of explain() objects applied to the same data and model. If the entries
                  in the list are named, then the function use these names. Otherwise, they default
                  to the approach names (with integer suffix for duplicates) for the explanation
                  objects in explanation_list.
index_x_explain
                  Integer vector. Which of the test observations to plot. E.g. if you have ex-
                  plained 10 observations using explain(), you can generate a plot for the first 5
                  observations by setting index_x_explain = 1:5.
id_combination Integer vector. Which of the combinations (coalitions) to plot. E.g. if you
                  used n_combinations = 16 in explain(), you can generate a plot for the first
                  5 combinations and the 10th by setting id_combination = c(1:5, 10).
CI_level
                  Positive numeric between zero and one. Default is 0.95 if the number of obser-
                  vations to explain is larger than 20, otherwise CI_level = NULL, which removes
                  the confidence intervals. The level of the approximate confidence intervals for
                  the overall MSEv and the MSEv_combination. The confidence intervals are
                  based on that the MSEv scores are means over the observations/explicands, and
```

that means are approximation normal. Since the standard deviations are estimated, we use the quantile t from the T distribution with N_explicands - 1 degrees of freedom corresponding to the provided level. Here, N_explicands is the number of observations/explicands. $MSEv \pm tSD(MSEv)/sqrt(N_explicands)$. *Note that the* explain() *function already scales the standard deviation by sqrt(N_explicands)*, *thus, the CI are MSEv* $\pm tMSEv_sd$, where the values MSEv and MSEv_sd are extracted from the MSEv data.tables in the objects in the explanation_list.

- geom_col_width Numeric. Bar width. By default, set to 90% of the ggplot2::resolution() of the data.
- plot_type Character vector. The possible options are "overall" (default), "comb", and "explicand". If plot_type = "overall", then the plot (one bar plot) associated with the overall MSEv evaluation criterion for each method is created, i.e., when averaging over both the combinations/coalitions and observations/explicands. If plot_type = "comb", then the plots (one line plot and one bar plot) associated with the MSEv evaluation criterion for each combination/coalition are created, i.e., when we only average over the observations/explicands. If plot_type = "explicand", then the plots (one line plot and one bar plot) associated with the MSEv evaluation criterion for each observations/explicands are created, i.e., when we only average over the combinations/coalitions. If plot_type is a vector of one or several of "overall", "comb", and "explicand", then the associated plots are created.

Value

Either a single ggplot2::ggplot() object of the MSEv criterion when plot_type = "overall", or a list of ggplot2::ggplot() objects based on the plot_type parameter.

Author(s)

Lars Henry Berge Olsen

Examples

```
# Load necessary librarieslibrary(xgboost)
library(data.table)
library(shapr)
library(ggplot2)
```

```
# Get the data
data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data), ]</pre>
```

```
#' Define the features and the response
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"</pre>
```

```
# Split data into test and training data set
ind_x_explain <- 1:25
x_train <- data[-ind_x_explain, ..x_var]</pre>
```

```
y_train <- data[-ind_x_explain, get(y_var)]</pre>
x_explain <- data[ind_x_explain, ...x_var]</pre>
# Fitting a basic xgboost model to the training data
model <- xgboost::xgboost(</pre>
  data = as.matrix(x_train),
  label = y_train,
  nround = 20,
  verbose = FALSE
)
# Specifying the phi_0, i.e. the expected prediction without any features
prediction_zero <- mean(y_train)</pre>
# Independence approach
explanation_independence <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "independence",
  prediction_zero = prediction_zero,
  n_samples = 1e2
)
# Gaussian 1e1 approach
explanation_gaussian_1e1 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "gaussian",
  prediction_zero = prediction_zero,
  n_samples = 1e1
)
# Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "gaussian",
  prediction_zero = prediction_zero,
  n_samples = 1e2
)
# ctree approach
explanation_ctree <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "ctree",
  prediction_zero = prediction_zero,
  n_samples = 1e2
)
```

```
# Combined approach
explanation_combined <- explain(</pre>
 model = model,
 x_explain = x_explain,
 x_train = x_train,
 approach = c("gaussian", "independence", "ctree"),
 prediction_zero = prediction_zero,
 n_samples = 1e2
)
# Create a list of explanations with names
explanation_list_named <- list(</pre>
  "Ind." = explanation_independence,
  "Gaus. 1e1" = explanation_gaussian_1e1,
  "Gaus. 1e2" = explanation_gaussian_1e2,
  "Ctree" = explanation_ctree,
  "Combined" = explanation_combined
)
if (requireNamespace("ggplot2", quietly = TRUE)) {
 # Create the default MSEv plot where we average over both the combinations and observations
 # with approximate 95% confidence intervals
 plot_MSEv_eval_crit(explanation_list_named, CI_level = 0.95, plot_type = "overall")
 # Can also create plots of the MSEv criterion averaged only over the combinations or observations.
 MSEv_figures <- plot_MSEv_eval_crit(explanation_list_named,</pre>
   CI_level = 0.95,
   plot_type = c("overall", "comb", "explicand")
 )
 MSEv_figures$MSEv_bar
 MSEv_figures$MSEv_combination_bar
 MSEv_figures$MSEv_explicand_bar
 # When there are many combinations or observations, then it can be easier to look at line plots
 MSEv_figures$MSEv_combination_line_point
 MSEv_figures$MSEv_explicand_line_point
 # We can specify which observations or combinations to plot
 plot_MSEv_eval_crit(explanation_list_named,
    plot_type = "explicand",
    index_x_explain = c(1, 3:4, 6),
    CI_level = 0.95
 )$MSEv_explicand_bar
 plot_MSEv_eval_crit(explanation_list_named,
    plot_type = "comb",
    id_combination = c(3, 4, 9, 13:15),
    CI_level = 0.95
 )$MSEv_combination_bar
 # We can alter the figures if other palette schemes or design is wanted
 bar_text_n_decimals <- 1</pre>
```

```
MSEv_figures$MSEv_bar +
```

```
ggplot2::scale_x_discrete(limits = rev(levels(MSEv_figures$MSEv_bar$data$Method))) +
ggplot2::coord_flip() +
ggplot2::scale_fill_discrete() + #' Default ggplot2 palette
ggplot2::theme_minimal() + #' This must be set before the other theme call
ggplot2::theme(
  plot.title = ggplot2::element_text(size = 10),
  legend.position = "bottom"
) +
ggplot2::guides(fill = ggplot2::guide_legend(nrow = 1, ncol = 6)) +
ggplot2::geom_text(
  ggplot2::aes(label = sprintf(
    paste("%.", sprintf("%d", bar_text_n_decimals), "f", sep = ""),
    round(MSEv, bar_text_n_decimals)
  )),
  vjust = -1.1, # This value must be altered based on the plot dimension
  hjust = 1.1, # This value must be altered based on the plot dimension
  color = "black",
  position = ggplot2::position_dodge(0.9),
  size = 5
)
```

plot_SV_several_approaches

Shapley value bar plots for several explanation objects

Description

}

Make plots to visualize and compare the estimated Shapley values for a list of explain() objects applied to the same data and model.

Usage

```
plot_SV_several_approaches(
    explanation_list,
    index_explicands = NULL,
    only_these_features = NULL,
    plot_phi0 = FALSE,
    digits = 4,
    add_zero_line = FALSE,
    axis_labels_n_dodge = NULL,
    axis_labels_rotate_angle = NULL,
    horizontal_bars = TRUE,
    facet_scales = "free",
    facet_ncol = 2,
    geom_col_width = 0.85,
    brewer_palette = NULL
)
```

Arguments

explanation_list

A list of explain() objects applied to the same data and model. If the entries in the list is named, then the function use these names. Otherwise, it defaults to the approach names (with integer suffix for duplicates) for the explanation objects in explanation_list.

index_explicands

Integer vector. Which of the explicands (test observations) to plot. E.g. if you have explained 10 observations using explain(), you can generate a plot for the first 5 observations/explicands and the 10th by setting index_x_explain = c(1:5, 10).

only_these_features

String vector. Containing the names of the features which are to be included in the bar plots.

- plot_phi0 Boolean. If we are to include the ϕ_0 in the bar plots or not.
- digits Integer. Number of significant digits to use in the feature description.

add_zero_line Boolean. If we are to add a black line for a feature contribution of 0.

axis_labels_n_dodge

Integer. The number of rows that should be used to render the labels. This is useful for displaying labels that would otherwise overlap.

axis_labels_rotate_angle

Numeric. The angle of the axis label, where 0 means horizontal, 45 means tilted, and 90 means vertical. Compared to setting the angle inggplot2::theme() / ggplot2::element_text(), this also uses some heuristics to automatically pick the hjust and vjust that you probably want.

horizontal_bars

Boolean. Flip Cartesian coordinates so that horizontal becomes vertical, and vertical, horizontal. This is primarily useful for converting geoms and statistics which display y conditional on x, to x conditional on y. See ggplot2::coord_flip().

- facet_scales Should scales be free ("free", the default), fixed ("fixed"), or free in one dimension ("free_x", "free_y")? The user has to change the latter manually depending on the value of horizontal_bars.
- facet_ncol Integer. The number of columns in the facet grid. Default is facet_ncol = 2.
- geom_col_width Numeric. Bar width. By default, set to 85% of the ggplot2::resolution() of the data.
- brewer_palette String. Name of one of the color palettes from RColorBrewer::RColorBrewer(). If NULL, then the function uses the default ggplot2::ggplot() color scheme. The following palettes are available for use with these scales:
 - **Diverging** BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, Spectral
 - Qualitative Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3
 - Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu, PuBuGn, PuRd, Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd

Value

A ggplot2::ggplot() object.

Author(s)

Lars Henry Berge Olsen

Examples

```
# Load necessary libraries
library(xgboost)
library(data.table)
# Get the data
data("airquality")
data <- data.table::as.data.table(airquality)</pre>
data <- data[complete.cases(data), ]</pre>
# Define the features and the response
x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
y_var <- "Ozone"
# Split data into test and training data set
ind_x_explain <- 1:12</pre>
x_train <- data[-ind_x_explain, ...x_var]</pre>
y_train <- data[-ind_x_explain, get(y_var)]</pre>
x_explain <- data[ind_x_explain, ...x_var]</pre>
# Fitting a basic xgboost model to the training data
model <- xgboost::xgboost(</pre>
  data = as.matrix(x_train),
  label = y_train,
  nround = 20,
  verbose = FALSE
)
# Specifying the phi_0, i.e. the expected prediction without any features
prediction_zero <- mean(y_train)</pre>
# Independence approach
explanation_independence <- explain(</pre>
 model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "independence",
  prediction_zero = prediction_zero,
  n_samples = 1e2
)
# Empirical approach
explanation_empirical <- explain(</pre>
  model = model,
```

```
x_{explain} = x_{explain}
 x_train = x_train,
 approach = "empirical",
 prediction_zero = prediction_zero,
 n_samples = 1e2
)
# Gaussian 1e1 approach
explanation_gaussian_1e1 <- explain(</pre>
 model = model,
 x_explain = x_explain,
 x_train = x_train,
 approach = "gaussian",
 prediction_zero = prediction_zero,
 n_samples = 1e1
)
# Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(</pre>
 model = model,
 x_explain = x_explain,
 x_train = x_train,
 approach = "gaussian",
 prediction_zero = prediction_zero,
 n_samples = 1e2
)
# Combined approach
explanation_combined <- explain(</pre>
 model = model,
 x_explain = x_explain,
 x_train = x_train,
 approach = c("gaussian", "ctree", "empirical"),
 prediction_zero = prediction_zero,
 n_samples = 1e2
)
# Create a list of explanations with names
explanation_list <- list(</pre>
  "Ind." = explanation_independence,
  "Emp." = explanation_empirical,
  "Gaus. 1e1" = explanation_gaussian_1e1,
  "Gaus. 1e2" = explanation_gaussian_1e2,
  "Combined" = explanation_combined
)
if (requireNamespace("ggplot2", quietly = TRUE)) {
  # The function uses the provided names.
 plot_SV_several_approaches(explanation_list)
```

We can change the number of columns in the grid of plots and add other visual alterations plot_SV_several_approaches(explanation_list, facet_ncol = 3,

```
facet_scales = "free_y",
  add_zero_line = TRUE,
  digits = 2,
  brewer_palette = "Paired",
  geom_col_width = 0.6
) +
  ggplot2::theme_minimal() +
 ggplot2::theme(legend.position = "bottom", plot.title = ggplot2::element_text(size = 0))
# We can specify which explicands to plot to get less chaotic plots and make the bars vertical
plot_SV_several_approaches(explanation_list,
  index_explicands = c(1:2, 5, 10),
  horizontal_bars = FALSE,
  axis_labels_rotate_angle = 45
)
# We can change the order of the features by specifying the
# order using the `only_these_features` parameter.
plot_SV_several_approaches(explanation_list,
  index_explicands = c(1:2, 5, 10),
  only_these_features = c("Temp", "Solar.R", "Month", "Wind")
)
# We can also remove certain features if we are not interested in them
# or want to focus on, e.g., two features. The function will give a
# message to if the user specifies non-valid feature names.
plot_SV_several_approaches(explanation_list,
  index_explicands = c(1:2, 5, 10),
  only_these_features = c("Temp", "Solar.R"),
  plot_phi0 = TRUE
)
```

process_factor_data Treat factors as numeric values

Description

}

Factors are given a numeric value above the highest numeric value in the data. The value of the different levels are sorted by factor and then level.

Usage

process_factor_data(dt, factor_cols)

Arguments

dt	data.table to plot
factor_cols	Columns that are factors or character

Value

A list of a lookup table with each factor and level and its numeric value, a data.table very similar to the input data, but now with numeric values for factors, and the maximum feature value.

reg_forecast_setup Set up exogenous regressors for explanation in a forecast model.

Description

Set up exogenous regressors for explanation in a forecast model.

Usage

reg_forecast_setup(x, horizon, group)

Arguments

х	A matrix with the exogenous variables.
horizon	The forecast horizon.
group	The list of endogenous groups, to append exogenous groups to.

Value

A list containing

- fcast A matrix containing the exogenous observations needed for each observation.
- group The list group with the exogenous groups appended.

release_questions Auxiliary function for the vaeac vignette

Description

Function that question if the main and vaeac vignette has been built using the rebuild-long-running-vignette.R function. This is only useful when using devtools to release shapr to cran. See devtools::release() for more information.

Usage

release_questions()

setup

check_setup

Description

check_setup

Usage

```
setup(
  x_train,
 x_explain,
 approach,
 prediction_zero,
 output_size = 1,
 n_combinations,
 group,
 n_samples,
 n_batches,
  seed,
 keep_samp_for_vS,
  feature_specs,
 MSEv_uniform_comb_weights = TRUE,
  type = "normal",
 horizon = NULL,
 y = NULL,
  xreg = NULL,
  train_idx = NULL,
 explain_idx = NULL,
 explain_y_lags = NULL,
 explain_xreg_lags = NULL,
 group_lags = NULL,
  timing,
  verbose,
 is_python = FALSE,
  . . .
)
```

Arguments

x_train	Matrix or data.frame/data.table. Contains the data used to estimate the (condi- tional) distributions for the features needed to properly estimate the conditional expectations in the Shapley formula.
x_explain	A matrix or data.frame/data.table. Contains the the features, whose predictions ought to be explained.

approach	Character vector of length 1 or one less than the number of features. All ele- ments should, either be "gaussian", "copula", "empirical", "ctree", "vaeac", "categorical", "timeseries", "independence", "regression_separate", or "regression_surrogate". The two regression approaches can not be com- bined with any other approach. See details for more information.
prediction_zero)
	Numeric. The prediction value for unseen data, i.e. an estimate of the expected prediction without conditioning on any features. Typically we set this value equal to the mean of the response variable in our training data, but other choices such as the mean of the predictions in the training data are also reasonable.
output_size	TODO: Document
n_combinations	Integer. If group = NULL, n_combinations represents the number of unique fea- ture combinations to sample. If group != NULL, n_combinations represents the number of unique group combinations to sample. If n_combinations = NULL, the exact method is used and all combinations are considered. The maximum number of combinations equals 2^m, where m is the number of features.
group	List. If NULL regular feature wise Shapley values are computed. If provided, group wise Shapley values are computed. group then has length equal to the number of groups. The list element contains character vectors with the features included in each of the different groups.
n_samples	Positive integer. Indicating the maximum number of samples to use in the Monte Carlo integration for every conditional expectation. See also details.
n_batches	Positive integer (or NULL). Specifies how many batches the total number of fea- ture combinations should be split into when calculating the contribution function for each test observation. The default value is NULL which uses a reasonable trade-off between RAM allocation and computation speed, which depends on approach and n_combinations. For models with many features, increasing the number of batches reduces the RAM allocation significantly. This typically comes with a small increase in computation time.
seed	Positive integer. Specifies the seed before any randomness based code is being run. If NULL the seed will be inherited from the calling environment.
keep_samp_for_v	/S
	Logical. Indicates whether the samples used in the Monte Carlo estimation of v_S should be returned (in internal\$output)
feature_specs	List. The output from get_model_specs() or get_data_specs(). Contains the 3 elements:
	labels Character vector with the names of each feature.
	classes Character vector with the classes of each features.
	factor_levels Character vector with the levels for any categorical features.
MSEv_uniform_cc	bomb_weights Logical. If TRUE (default), then the function weights the combinations uniformly when computing the MSEv criterion. If FALSE, then the function use the Shapley kernel weights to weight the combinations when computing the MSEv criterion. Note that the Shapley kernel weights are replaced by the sampling frequency when not all combinations are considered.

type	Character. Either "normal" or "forecast" corresponding to function setup() is called from, correspondingly the type of explanation that should be generated.
horizon	Numeric. The forecast horizon to explain. Passed to the ${\tt predict_model}$ function.
У	Matrix, data.frame/data.table or a numeric vector. Contains the endogenous variables used to estimate the (conditional) distributions needed to properly estimate the conditional expectations in the Shapley formula including the observations to be explained.
xreg	Matrix, data.frame/data.table or a numeric vector. Contains the exogenous variables used to estimate the (conditional) distributions needed to properly estimate the conditional expectations in the Shapley formula including the observations to be explained. As exogenous variables are used contemporaneusly when producing a forecast, this item should contain $nrow(y) + horizon rows$.
train_idx	Numeric vector The row indices in data and reg denoting points in time to use when estimating the conditional expectations in the Shapley value formula. If train_idx = NULL (default) all indices not selected to be explained will be used.
explain_idx	Numeric vector The row indices in data and reg denoting points in time to explain.
explain_y_lags	Numeric vector. Denotes the number of lags that should be used for each variable in y when making a forecast.
explain_xreg_la	igs
	Numeric vector. If xreg != NULL, denotes the number of lags that should be used for each variable in xreg when making a forecast.
group_lags	Logical. If TRUE all lags of each variable are grouped together and explained as a group. If FALSE all lags of each variable are explained individually.
timing	Logical. Whether the timing of the different parts of the explain() should saved in the model object.
verbose	An integer specifying the level of verbosity. If \emptyset , shapr will stay silent. If 1, it will print information about performance. If 2, some additional information will be printed out. Use \emptyset (default) for no verbosity, 1 for low verbose, and 2 for high verbose. TODO: Make this clearer when we end up fixing this and if they should force a progressr bar.
is_python	Logical. Indicates whether the function is called from the Python wrapper. De- fault is FALSE which is never changed when calling the function via explain() in R. The parameter is later used to disallow running the AICc-versions of the empirical as that requires data based optimization.
	Further arguments passed to specific approaches

setup_approach

Set up the framework chosen approach

Description

The different choices of approach takes different (optional) parameters, which are forwarded from explain().

Usage

```
setup_approach(internal, ...)
## S3 method for class 'categorical'
setup_approach(
  internal,
  categorical.joint_prob_dt = NULL,
  categorical.epsilon = 0.001,
  . . .
)
## S3 method for class 'copula'
setup_approach(internal, ...)
## S3 method for class 'ctree'
setup_approach(
  internal,
  ctree.mincriterion = 0.95,
 ctree.minsplit = 20,
  ctree.minbucket = 7,
  ctree.sample = TRUE,
  . . .
)
## S3 method for class 'empirical'
setup_approach(
  internal,
  empirical.type = "fixed_sigma",
  empirical.eta = 0.95,
  empirical.fixed_sigma = 0.1,
  empirical.n_samples_aicc = 1000,
  empirical.eval_max_aicc = 20,
  empirical.start_aicc = 0.1,
  empirical.cov_mat = NULL,
 model = NULL,
  predict_model = NULL,
  . . .
)
## S3 method for class 'gaussian'
setup_approach(internal, gaussian.mu = NULL, gaussian.cov_mat = NULL, ...)
## S3 method for class 'independence'
setup_approach(internal, ...)
## S3 method for class 'regression_separate'
setup_approach(
  internal,
```

```
regression.model = parsnip::linear_reg(),
  regression.tune_values = NULL,
  regression.vfold_cv_para = NULL,
  regression.recipe_func = NULL,
  • • •
)
## S3 method for class 'regression_surrogate'
setup_approach(
  internal,
 regression.model = parsnip::linear_reg(),
  regression.tune_values = NULL,
 regression.vfold_cv_para = NULL,
  regression.recipe_func = NULL,
  regression.surrogate_n_comb = internal$parameters$used_n_combinations - 2,
  . . .
)
## S3 method for class 'timeseries'
setup_approach(
 internal,
  timeseries.fixed_sigma_vec = 2,
 timeseries.bounds = c(NULL, NULL),
  . . .
)
## S3 method for class 'vaeac'
setup_approach(
  internal,
 vaeac.depth = 3,
 vaeac.width = 32,
 vaeac.latent_dim = 8,
 vaeac.activation_function = torch::nn_relu,
  vaeac.lr = 0.001,
  vaeac.n_vaeacs_initialize = 4,
  vaeac.epochs = 100,
 vaeac.extra_parameters = list(),
  . . .
)
```

Arguments

internal	Not used.	
	approach-specific arguments. See below.	
categorical.joint_prob_dt		
	Data.table. (Optional) Containing the joint probability distribution for each combination of feature values. NULL means it is estimated from the x_train and x_explain.	

categorical.epsilon

Numeric value. (Optional) If joint_probability_dt is not supplied, probabilities/frequencies are estimated using x_train. If certain observations occur in x_train and NOT in x_explain, then epsilon is used as the proportion of times that these observations occurs in the training data. In theory, this proportion should be zero, but this causes an error later in the Shapley computation.

ctree.mincriterion

Numeric scalar or vector. (default = 0.95) Either a scalar or vector of length equal to the number of features in the model. Value is equal to 1 - α where α is the nominal level of the conditional independence tests. If it is a vector, this indicates which value to use when conditioning on various numbers of features.

- ctree.minsplit Numeric scalar. (default = 20) Determines minimum value that the sum of the left and right daughter nodes required for a split.
- ctree.minbucket

Numeric scalar. (default = 7) Determines the minimum sum of weights in a terminal node required for a split

- ctree.sample Boolean. (default = TRUE) If TRUE, then the method always samples n_samples observations from the leaf nodes (with replacement). If FALSE and the number of observations in the leaf node is less than n_samples, the method will take all observations in the leaf. If FALSE and the number of observations in the leaf node is more than n_samples, the method will sample n_samples observations (with replacement). This means that there will always be sampling in the leaf unless sample = FALSE AND the number of obs in the node is less than n_samples.
- empirical.eta Numeric. (default = 0.95) Needs to be 0 < eta <= 1. Represents the minimum proportion of the total empirical weight that data samples should use. If e.g. eta = .8 we will choose the K samples with the largest weight so that the sum of the weights accounts for 80\ eta is the η parameter in equation (15) of Aas et al (2021).
- empirical.fixed_sigma

Positive numeric scalar. (default = 0.1) Represents the kernel bandwidth in the distance computation used when conditioning on all different combinations. Only used when empirical.type = "fixed_sigma"

empirical.n_samples_aicc

Positive integer. (default = 1000) Number of samples to consider in AICc optimization. Only used for empirical.type is either "AICc_each_k" or "AICc_full".

empirical.eval_max_aicc

Positive integer. (default = 20) Maximum number of iterations when optimizing the AICc. Only used for empirical.type is either "AICc_each_k" or "AICc_full".

empirical.start_aicc

Numeric. (default = 0.1) Start value of the sigma parameter when optimizing the AICc. Only used for empirical.type is either "AICc_each_k" or "AICc_full".

empirical.cov_	nat
	Numeric matrix. (Optional, default = NULL) Containing the covariance matrix of the data generating distribution used to define the Mahalanobis distance. NULL means it is estimated from x_train .
model	Objects. The model object that ought to be explained. See the documentation of explain() for details.
predict_model	Function. The prediction function used when model is not natively supported. See the documentation of explain() for details.
gaussian.mu	Numeric vector. (Optional) Containing the mean of the data generating distribution. NULL means it is estimated from the x_train.
gaussian.cov_ma	at
	Numeric matrix. (Optional) Containing the covariance matrix of the data gener- ating distribution. NULL means it is estimated from the x_train.
regression.mode	
	A tidymodels object of class model_specs. Default is a linear regression model, i.e., parsnip::linear_reg(). See tidymodels for all possible mod- els, and see the vignette for how to add new/own models. Note, to make it easier to call explain() from Python, the regression.model parameter can also be a string specifying the model which will be parsed and evaluated. For example, "parsnip::rand_forest(mtry = hardhat::tune(), trees = 100, engine = "ranger", mode = "re is also a valid input. It is essential to include the package prefix if the package
	is not loaded.
regression.tune	e_values
	Either NULL (default), a data.frame/data.table/tibble, or a function. The data.frame must contain the possible hyperparameter value combinations to try. The col- umn names must match the names of the tuneable parameters specified in regression.model. If regression.tune_values is a function, then it should take one argument x which is the training data for the current combination/coalition and returns a data.frame/data.table/tibble with the properties described above. Using a func- tion allows the hyperparameter values to change based on the size of the combi- nation. See the regression vignette for several examples. Note, to make it easier to call explain() from Python, the regression.tune_values can also be a string containing an R function. For example, "function(x) return(dials::grid_regular(dials::m ncol(x)))), levels = 3))" is also a valid input. It is essential to include the package prefix if the package is not loaded.
regression.vfo	ld_cv_para
C	Either NULL (default) or a named list containing the parameters to be sent to rsample::vfold_cv(). See the regression vignette for several examples.
regression.rec	ipe_func
	Either NULL (default) or a function that that takes in a recipes::recipe() object and returns a modified recipes::recipe() with potentially additional recipe steps. See the regression vignette for several examples. Note, to make it easier to call explain() from Python, the regression.recipe_func can also be a string containing an R function. For example, "function(recipe)

return(recipes::step_ns(recipe, recipes::all_numeric_predictors(), deg_free = 2))" is also a valid input. It is essential to include the package prefix if the package is not loaded.

regression.surrogate_n_comb

Integer (default is internal\$parameters\$used_n_combinations) specifying the number of unique combinations/coalitions to apply to each training observation. Maximum allowed value is "internal\$parameters\$used_n_combinations - 2". By default, we use all coalitions, but this can take a lot of memory in larger dimensions. Note that by "all", we mean all coalitions chosen by shapr to be used. This will be all $2^{n_{features}}$ coalitions (minus empty and grand coalition) if shapr is in the exact mode. If the user sets a lower value than internal\$parameters\$used_n_combinations, then we sample this amount of unique coalitions should be equally trained.

timeseries.fixed_sigma_vec

Numeric. (Default = 2) Represents the kernel bandwidth in the distance computation. TODO: What length should it have? 1?

timeseries.bounds

Numeric vector of length two. (Default = c(NULL, NULL)) If one or both of these bounds are not NULL, we restrict the sampled time series to be between these bounds. This is useful if the underlying time series are scaled between 0 and 1, for example.

- vaeac.depth Positive integer (default is 3). The number of hidden layers in the neural networks of the masked encoder, full encoder, and decoder.
- vaeac.width Positive integer (default is 32). The number of neurons in each hidden layer in the neural networks of the masked encoder, full encoder, and decoder.

vaeac.latent_dim

Positive integer (default is 8). The number of dimensions in the latent space.

vaeac.activation_function

An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(), torch::nn_selu(), or torch::nn_sigmoid().

vaeac.lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam() optimizer.

vaeac.n_vaeacs_initialize

Positive integer (default is 4). The number of different vaeac models to initiate in the start. Pick the best performing one after vaeac.extra_parameters\$epochs_initiation_phase epochs (default is 2) and continue training that one.

vaeac.epochs Positive integer (default is 100). The number of epochs to train the final vaeac model. This includes vaeac.extra_parameters\$epochs_initiation_phase, where the default is 2.

vaeac.extra_parameters

Named list with extra parameters to the vaeac approach. See vaeac_get_extra_para_default() for description of possible additional parameters and their default values.

Author(s)

Martin Jullum

Lars Henry Berge Olsen

setup_computation Sets up everything for the Shapley values computation in explain()

Description

Sets up everything for the Shapley values computation in explain()

Usage

setup_computation(internal, model, predict_model)

Arguments

internal	List. Holds all parameters, data, functions and computed objects used within explain() The list contains one or more of the elements parameters, data, objects, output.
model	Objects. The model object that ought to be explained. See the documentation of explain() for details.
predict_model	Function. The prediction function used when model is not natively supported. See the documentation of explain() for details.

Value

List internal It holds all parameters, data, and computed objects used within explain(). The list contains one or more of the elements parameters, data, objects, output.

vaeac_get_data_objects

Function to set up data loaders and save file names

Description

Function to set up data loaders and save file names

Usage

```
vaeac_get_data_objects(
   x_train,
   log_exp_cont_feat,
   val_ratio,
   batch_size,
   paired_sampling,
   model_description,
   depth,
   width,
```

```
latent_dim,
lr,
epochs,
save_every_nth_epoch,
folder_to_save_model,
train_indices = NULL,
val_indices = NULL
)
```

Arguments

- x_train A data.table containing the training data. Categorical data must have class names 1, 2, ..., K.
- log_exp_cont_feat

Logical (default is FALSE). If we are to log transform all continuous features before sending the data to vaeac(). The vaeac model creates unbounded Monte Carlo sample values. Thus, if the continuous features are strictly positive (as for, e.g., the Burr distribution and Abalone data set), it can be advantageous to log transform the data to unbounded form before using vaeac. If TRUE, then vaeac_postprocess_data() will take the exp of the results to get back to strictly positive values when using the vaeac model to impute missing values/generate the Monte Carlo samples.

- val_ratio Numeric (default is 0.25). Scalar between 0 and 1 indicating the ratio of instances from the input data which will be used as validation data. That is, val_ratio = 0.25 means that 75% of the provided data is used as training data, while the remaining 25% is used as validation data.
- batch_size Positive integer (default is 64). The number of samples to include in each batch during the training of the vaeac model. Used in torch::dataloader().
- paired_sampling

Logical (default is TRUE). If TRUE, we apply paired sampling to the training batches. That is, the training observations in each batch will be duplicated, where the first instance will be masked by S while the second instance will be masked by \bar{S} . This ensures that the training of the vaeac model becomes more stable as the model has access to the full version of each training observation. However, this will increase the training time due to more complex implementation and doubling the size of each batch. See paired_sampler() for more information.

```
model_description
```

String (default is make.names(Sys.time())). String containing, e.g., the name of the data distribution or additional parameter information. Used in the save name of the fitted model. If not provided, then a name will be generated based on base::Sys.time() to ensure a unique name. We use base::make.names() to ensure a valid file name for all operating systems.

- depth Positive integer (default is 3). The number of hidden layers in the neural networks of the masked encoder, full encoder, and decoder.
- width Positive integer (default is 32). The number of neurons in each hidden layer in the neural networks of the masked encoder, full encoder, and decoder.

latent_dim	Positive integer (default is 8). The number of dimensions in the latent space.	
lr	Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam() optimizer.	
epochs	Positive integer (default is 100). The number of epochs to train the final vaeac model. This includes epochs_initiation_phase, where the default is 2.	
save_every_nth_epoch		
	Positive integer (default is NULL). If provided, then the vaeac model after every	
	<pre>save_every_nth_epochth epoch will be saved.</pre>	
folder_to_save_model		
	String (default is base::tempdir()). String specifying a path to a folder where the function is to save the fitted vaeac model. Note that the path will be removed from the returned explain() object if vaeac.save_model = FALSE.	
train_indices	Numeric array (optional) containing the indices of the training observations. There are conducted no checks to validdate the indices.	
val_indices	Numeric array (optional) containing the indices of the validation observations. #' There are conducted no checks to validdate the indices.	

Value

List of objects needed to train the vaeac model

vaeac_get_evaluation_criteria

Extract the Training VLB and Validation IWAE from a list of explanations objects using the vaeac approach

Description

Extract the Training VLB and Validation IWAE from a list of explanations objects using the vaeac approach

Usage

```
vaeac_get_evaluation_criteria(explanation_list)
```

Arguments

explanation_list

A list of explain() objects applied to the same data, model, and vaeac must be the used approach. If the entries in the list is named, then the function use these names. Otherwise, it defaults to the approach names (with integer suffix for duplicates) for the explanation objects in explanation_list.

Value

A data.table containing the training VLB, validation IWAE, and running validation IWAE at each epoch for each vaeac model.

Author(s)

Lars Henry Berge Olsen

vaeac_get_extra_para_default

Function to specify the extra parameters in the vaeac model

Description

In this function, we specify the default values for the extra parameters used in explain() for approach = "vaeac".

Usage

```
vaeac_get_extra_para_default(
  vaeac.model_description = make.names(Sys.time()),
  vaeac.folder_to_save_model = tempdir(),
  vaeac.pretrained_vaeac_model = NULL,
  vaeac.cuda = FALSE,
  vaeac.epochs_initiation_phase = 2,
  vaeac.epochs_early_stopping = NULL,
  vaeac.save_every_nth_epoch = NULL,
  vaeac.val_ratio = 0.25,
  vaeac.val_iwae_n_samples = 25,
  vaeac.batch_size = 64,
  vaeac.batch_size_sampling = NULL,
  vaeac.running_avg_n_values = 5,
  vaeac.skip_conn_layer = TRUE,
  vaeac.skip_conn_masked_enc_dec = TRUE,
  vaeac.batch_normalization = FALSE,
  vaeac.paired_sampling = TRUE,
  vaeac.masking_ratio = 0.5,
  vaeac.mask_gen_coalitions = NULL,
  vaeac.mask_gen_coalitions_prob = NULL,
  vaeac.sigma_mu = 10000,
  vaeac.sigma_sigma = 1e-04,
  vaeac.sample_random = TRUE,
  vaeac.save_data = FALSE,
  vaeac.log_exp_cont_feat = FALSE,
  vaeac.which_vaeac_model = "best",
  vaeac.save_model = TRUE
)
```

Arguments

vaeac.model_description

String (default is make.names(Sys.time())). String containing, e.g., the name of the data distribution or additional parameter information. Used in the save name of the fitted model. If not provided, then a name will be generated based on base::Sys.time() to ensure a unique name. We use base::make.names() to ensure a valid file name for all operating systems.

vaeac.folder_to_save_model

String (default is base::tempdir()). String specifying a path to a folder where the function is to save the fitted vaeac model. Note that the path will be removed from the returned explain() object if vaeac.save_model = FALSE. Furthermore, the model cannot be moved from its original folder if we are to use the vaeac_train_model_continue() function to continue training the model.

vaeac.pretrained_vaeac_model

List or String (default is NULL). 1) Either a list of class vaeac, i.e., the list stored in explanation\$internal\$parameters\$vaeac where explanation is the returned list from an earlier call to the explain() function. 2) A string containing the path to where the vaeac model is stored on disk, for example, explanation\$internal\$parameters\$vaeac\$models\$best.

vaeac.cuda Logical (default is FALSE). If TRUE, then the vaeac model will be trained using cuda/GPU. If torch::cuda_is_available() is FALSE, the we fall back to use CPU. If FALSE, we use the CPU. Using a GPU for smaller tabular dataset often do not improve the efficiency. See vignette("installation", package = "torch") fo help to enable running on the GPU (only Linux and Windows).

vaeac.epochs_initiation_phase

Positive integer (default is 2). The number of epochs to run each of the vaeac.n_vaeacs_initialize vaeac models before continuing to train only the best performing model.

vaeac.epochs_early_stopping

Positive integer (default is NULL). The training stops if there has been no improvement in the validation IWAE for vaeac.epochs_early_stopping epochs. If the user wants the training process to be solely based on this training criterion, then vaeac.epochs in explain() should be set to a large number. If NULL, then shapr will internally set vaeac.epochs_early_stopping = vaeac.epochs such that early stopping does not occur.

vaeac.save_every_nth_epoch

Positive integer (default is NULL). If provided, then the vaeac model after every vaeac.save_every_nth_epochth epoch will be saved.

vaeac.val_ratio

Numeric (default is 0.25). Scalar between 0 and 1 indicating the ratio of instances from the input data which will be used as validation data. That is, vaeac.val_ratio = 0.25 means that 75% of the provided data is used as training data, while the remaining 25% is used as validation data.

vaeac.val_iwae_n_samples

Positive integer (default is 25). The number of generated samples used to compute the IWAE criterion when validating the vaeac model on the validation data.

vaeac.batch_size

Positive integer (default is 64). The number of samples to include in each batch during the training of the vaeac model. Used in torch::dataloader().

vaeac.batch_size_sampling

Positive integer (default is NULL) The number of samples to include in each batch when generating the Monte Carlo samples. If NULL, then the function generates the Monte Carlo samples for the provided coalitions/combinations and all explicands sent to explain() at the time. The number of coalitions are determined by n_batches in explain(). We recommend to tweak n_batches rather than vaeac.batch_size_sampling. Larger batch sizes are often much faster provided sufficient memory.

vaeac.running_avg_n_values

Positive integer (default is 5). The number of previous IWAE values to include when we compute the running means of the IWAE criterion.

vaeac.skip_conn_layer

Logical (default is TRUE). If TRUE, we apply identity skip connections in each layer, see skip_connection(). That is, we add the input X to the outcome of each hidden layer, so the output becomes X + activation(WX + b).

vaeac.skip_conn_masked_enc_dec

Logical (default is TRUE). If TRUE, we apply concatenate skip connections between the layers in the masked encoder and decoder. The first layer of the masked encoder will be linked to the last layer of the decoder. The second layer of the masked encoder will be linked to the second to last layer of the decoder, and so on.

vaeac.batch_normalization

Logical (default is FALSE). If TRUE, we apply batch normalization after the activation function. Note that if vaeac.skip_conn_layer = TRUE, then the normalization is applied after the inclusion of the skip connection. That is, we batch normalize the whole quantity X + activation(WX + b).

vaeac.paired_sampling

Logical (default is TRUE). If TRUE, we apply paired sampling to the training batches. That is, the training observations in each batch will be duplicated, where the first instance will be masked by S while the second instance will be masked by \bar{S} . This ensures that the training of the vaeac model becomes more stable as the model has access to the full version of each training observation. However, this will increase the training time due to more complex implementation and doubling the size of each batch. See paired_sampler() for more information.

vaeac.masking_ratio

Numeric (default is 0.5). Probability of masking a feature in the mcar_mask_generator() (MCAR = Missing Completely At Random). The MCAR masking scheme ensures that vaeac model can do arbitrary conditioning as all coalitions will be trained. vaeac.masking_ratio will be overruled if vaeac.mask_gen_coalitions is specified.

vaeac.mask_gen_coalitions

Matrix (default is NULL). Matrix containing the coalitions that the vaeac model will be trained on, see specified_masks_mask_generator(). This parameter is used internally in shapr when we only consider a subset of coalitions/combinations,

i.e., when n_combinations $< 2^{n_{\text{features}}}$, and for group Shapley, i.e., when group is specified in explain().

vaeac.mask_gen_coalitions_prob

Numeric array (default is NULL). Array of length equal to the height of vaeac.mask_gen_coalitions containing the probabilities of sampling the corresponding coalitions in vaeac.mask_gen_coalitions.

vaeac.sigma_mu Numeric (default is 1e4). One of two hyperparameter values in the normalgamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al. (2022).

vaeac.sigma_sigma

Numeric (default is 1e-4). One of two hyperparameter values in the normalgamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al. (2022).

vaeac.sample_random

Logical (default is TRUE). If TRUE, the function generates random Monte Carlo samples from the inferred generative distributions. If FALSE, the function use the most likely values, i.e., the mean and class with highest probability for continuous and categorical, respectively.

vaeac.save_data

Logical (default is FALSE). If TRUE, then the data is stored together with the

vaeac.log_exp_cont_feat

Logical (default is FALSE). If we are to log transform all continuous features before sending the data to vaeac(). The vaeac model creates unbounded Monte Carlo sample values. Thus, if the continuous features are strictly positive (as for, e.g., the Burr distribution and Abalone data set), it can be advantageous to log transform the data to unbounded form before using vaeac. If TRUE, then vaeac_postprocess_data() will take the exp of the results to get back to strictly positive values when using the vaeac model to impute missing values/generate the Monte Carlo samples.

vaeac.which_vaeac_model

String (default is best). The name of the vaeac model (snapshots from different epochs) to use when generating the Monte Carlo samples. The standard choices are: "best" (epoch with lowest IWAE), "best_running" (epoch with lowest running IWAE, see vaeac.running_avg_n_values), and last (the last epoch). Note that additional choices are available if vaeac.save_every_nth_epoch is provided. For example, if vaeac.save_every_nth_epoch = 5, then vaeac.which_vaeac_model can also take the values "epoch_5", "epoch_10", "epoch_15", and so on.

vaeac.save_model

Boolean. If TRUE (default), the vaeac model will be saved either in a base::tempdir() folder or in a user specified location in vaeac.folder_to_save_model. If FALSE, then the paths to model and the model will will be deleted from the returned object from explain().

Details

The vaeac model consists of three neural network (a full encoder, a masked encoder, and a decoder) based on the provided vaeac.depth and vaeac.width. The encoders map the full and

model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

masked input representations to latent representations, respectively, where the dimension is given by vaeac.latent_dim. The latent representations are sent to the decoder to go back to the real feature space and provide a samplable probabilistic representation, from which the Monte Carlo samples are generated. We use the vaeac method at the epoch with the lowest validation error (IWAE) by default, but other possibilities are available but setting the vaeac.which_vaeac_model parameter. See Olsen et al. (2022) for more details.

Value

Named list of the default values vaeac extra parameter arguments specified in this function call. Note that both vaeac.model_description and vaeac.folder_to_save_model will change with time and R session.

Author(s)

Lars Henry Berge Olsen

vaeac_plot_eval_crit Plot the training VLB and validation IWAE for vaeac models

Description

This function makes (ggplot2::ggplot()) figures of the training VLB and the validation IWAE for a list of explain() objects with approach = "vaeac". See setup_approach() for more information about the vaeac approach. Two figures are returned by the function. In the figure, each object in explanation_list gets its own facet, while in the second figure, we plot the criteria in each facet for all objects.

Usage

```
vaeac_plot_eval_crit(
  explanation_list,
  plot_from_nth_epoch = 1,
  plot_every_nth_epoch = 1,
  criteria = c("VLB", "IWAE"),
  plot_type = c("method", "criterion"),
  facet_wrap_scales = "fixed",
  facet_wrap_ncol = NULL
)
```

Arguments

```
explanation_list
```

A list of explain() objects applied to the same data, model, and vaeac must be the used approach. If the entries in the list is named, then the function use these names. Otherwise, it defaults to the approach names (with integer suffix for duplicates) for the explanation objects in explanation_list.

plot_from_nth_epoch Integer. If we are only plot the results form the nth epoch and so forth. The first epochs can be large in absolute value and make the rest of the plot difficult to interpret. plot_every_nth_epoch Integer. If we are only to plot every nth epoch. Usefully to illustrate the overall trend, as there can be a lot of fluctuation and oscillation in the values between each epoch. criteria Character vector. The possible options are "VLB", "IWAE", "IWAE_running". Default is the first two. plot_type Character vector. The possible options are "method" and "criterion". Default is to plot both. facet_wrap_scales String. Should the scales be fixed ("fixed", the default), free ("free"), or free in one dimension ("free_x", "free_y"). facet_wrap_ncol Integer. Number of columns in the facet wrap.

Details

See Olsen et al. (2022) or the blog post for a summary of the VLB and IWAE.

Value

Either a single ggplot2::ggplot() object or a list of ggplot2::ggplot() objects based on the plot_type parameter.

Author(s)

Lars Henry Berge Olsen

Examples

```
## Not run:
library(xgboost)
library(data.table)
library(shapr)
data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data), ]
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"
ind_x_explain <- 1:6
x_train <- data[-ind_x_explain, ...x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ...x_var]</pre>
```

```
# Fitting a basic xgboost model to the training data
model <- xgboost(data = as.matrix(x_train), label = y_train, nround = 100, verbose = FALSE)</pre>
# Specifying the phi_0, i.e. the expected prediction without any features
p0 <- mean(y_train)</pre>
# Train vaeac with and without paired sampling
explanation_paired <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = approach,
  prediction_zero = p0,
  n_samples = 1, # As we are only interested in the training of the vaeac
  vaeac.epochs = 10, # Should be higher in applications.
  vaeac.n_vaeacs_initialize = 1,
  vaeac.width = 16,
  vaeac.depth = 2,
  vaeac.extra_parameters = list(vaeac.paired_sampling = TRUE)
)
explanation_regular <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = approach,
  prediction_zero = p0,
  n_samples = 1, # As we are only interested in the training of the vaeac
  vaeac.epochs = 10, # Should be higher in applications.
  vaeac.width = 16,
  vaeac.depth = 2,
  vaeac.n_vaeacs_initialize = 1,
  vaeac.extra_parameters = list(vaeac.paired_sampling = FALSE)
)
# Collect the explanation objects in an named list
explanation_list <- list(</pre>
  "Regular sampling" = explanation_regular,
  "Paired sampling" = explanation_paired
)
# Call the function with the named list, will use the provided names
vaeac_plot_eval_crit(explanation_list = explanation_list)
# The function also works if we have only one method,
# but then one should only look at the method plot.
vaeac_plot_eval_crit(
  explanation_list = explanation_list[2],
  plot_type = "method"
)
# Can alter the plot
vaeac_plot_eval_crit(
```

```
explanation_list = explanation_list,
 plot_from_nth_epoch = 2,
 plot_every_nth_epoch = 2,
 facet_wrap_scales = "free"
)
# If we only want the VLB
vaeac_plot_eval_crit(
 explanation_list = explanation_list,
 criteria = "VLB",
 plot_type = "criterion"
)
# If we want only want the criterion version
tmp_fig_criterion <-</pre>
 vaeac_plot_eval_crit(explanation_list = explanation_list, plot_type = "criterion")
# Since tmp_fig_criterion is a ggplot2 object, we can alter it
# by, e.g,. adding points or smooths with se bands
tmp_fig_criterion + ggplot2::geom_point(shape = "circle", size = 1, ggplot2::aes(col = Method))
tmp_fig_criterion$layers[[1]] <- NULL</pre>
tmp_fig_criterion + ggplot2::geom_smooth(method = "loess", formula = y ~ x, se = TRUE) +
 ggplot2::scale_color_brewer(palette = "Set1") +
 ggplot2::theme_minimal()
```

End(Not run)

vaeac_plot_imputed_ggpairs

Plot Pairwise Plots for Imputed and True Data

Description

A function that creates a matrix of plots (GGally::ggpairs()) from generated imputations from the unconditioned distribution p(x) estimated by a vaeac model, and then compares the imputed values with data from the true distribution (if provided). See ggpairs for an introduction to GGally::ggpairs(), and the corresponding vignette.

Usage

```
vaeac_plot_imputed_ggpairs(
    explanation,
    which_vaeac_model = "best",
    x_true = NULL,
    add_title = TRUE,
    alpha = 0.5,
    upper_cont = c("cor", "points", "smooth", "smooth_loess", "density", "blank"),
    upper_cat = c("count", "cross", "ratio", "facetbar", "blank"),
```

```
upper_mix = c("box", "box_no_facet", "dot", "dot_no_facet", "facethist",
    "facetdensity", "denstrip", "blank"),
    lower_cont = c("points", "smooth", "smooth_loess", "density", "cor", "blank"),
    lower_cat = c("facetbar", "ratio", "count", "cross", "blank"),
    lower_mix = c("facetdensity", "box", "box_no_facet", "dot", "dot_no_facet",
        "facethist", "denstrip", "blank"),
    diag_cont = c("densityDiag", "blank"),
    diag_cat = c("barDiag", "blankDiag"),
    cor_method = c("pearson", "kendall", "spearman")
)
```

Arguments

explanation	Shapr list. The output list from the explain() function.
which_vaeac_mo	del
	String. Indicating which vaeac model to use when generating the samples. Possible options are always 'best', 'best_running', and 'last'. All possible options can be obtained by calling names(explanation\$internal\$parameters\$vaeac\$models).
x_true	Data.table containing the data from the distribution that the vaeac model is fitted to.
add_title	Logical. If TRUE, then a title is added to the plot based on the internal description of the vaeac model specified in which_vaeac_model.
alpha	Numeric between 0 and 1 (default is 0.5). The degree of color transparency.
upper_cont	<pre>String. Type of plot to use in upper triangle for continuous features, see GGally::ggpairs(). Possible options are: 'cor' (default), 'points', 'smooth', 'smooth_loess', 'density', and 'blank'.</pre>
upper_cat	String. Type of plot to use in upper triangle for categorical features, see GGally::ggpairs(). Possible options are: 'count' (default), 'cross', 'ratio', 'facetbar', and 'blank'.
upper_mix	<pre>String. Type of plot to use in upper triangle for mixed features, see GGally::ggpairs(). Possible options are: 'box' (default), 'box_no_facet', 'dot', 'dot_no_facet', 'facethist', 'facetdensity', 'denstrip', and 'blank'</pre>
lower_cont	<pre>String. Type of plot to use in lower triangle for continuous features, see GGally::ggpairs(). Possible options are: 'points' (default), 'smooth', 'smooth_loess', 'density', 'cor', and 'blank'.</pre>
lower_cat	String. Type of plot to use in lower triangle for categorical features, see GGally::ggpairs(). Possible options are: 'facetbar' (default), 'ratio', 'count', 'cross', and 'blank'.
lower_mix	<pre>String. Type of plot to use in lower triangle for mixed features, see GGally::ggpairs(). Possible options are: 'facetdensity' (default), 'box', 'box_no_facet', 'dot', 'dot_no_facet', 'facethist', 'denstrip', and 'blank'.</pre>
diag_cont	String. Type of plot to use on the diagonal for continuous features, see GGally::ggpairs(). Possible options are: 'densityDiag' (default), 'barDiag', and 'blankDiag'.
diag_cat	String. Type of plot to use on the diagonal for categorical features, see GGally::ggpairs(). Possible options are: 'barDiag' (default) and 'blankDiag'.
cor_method	String. Type of correlation measure, see GGally::ggpairs(). Possible options are: 'pearson' (default), 'kendall', and 'spearman'.

Value

A GGally::ggpairs() figure.

Author(s)

Lars Henry Berge Olsen

Examples

```
## Not run:
library(xgboost)
library(data.table)
library(shapr)
data("airquality")
data <- data.table::as.data.table(airquality)</pre>
data <- data[complete.cases(data), ]</pre>
x_var <- c("Solar.R", "Wind", "Temp", "Month")</pre>
y_var <- "Ozone"
ind_x_explain <- 1:6</pre>
x_train <- data[-ind_x_explain, ...x_var]</pre>
y_train <- data[-ind_x_explain, get(y_var)]</pre>
x_explain <- data[ind_x_explain, ...x_var]</pre>
# Fitting a basic xgboost model to the training data
model <- xgboost(</pre>
  data = as.matrix(x_train),
  label = y_train,
  nround = 100,
  verbose = FALSE
)
explanation <- explain(</pre>
  model = model,
  x_explain = x_explain,
  x_train = x_train,
  approach = "vaeac",
  prediction_zero = mean(y_train),
  n_{samples} = 1,
  vaeac.epochs = 10,
  vaeac.n_vaeacs_initialize = 1
)
# Plot the results
figure <- vaeac_plot_imputed_ggpairs(</pre>
  explanation = explanation,
  which_vaeac_model = "best",
  x_true = x_train,
  add_title = TRUE
)
```

```
figure
# Note that this is an ggplot2 object which we can alter, e.g., we can change the colors.
figure +
   ggplot2::scale_color_manual(values = c("#E69F00", "#9999999")) +
   ggplot2::scale_fill_manual(values = c("#E69F00", "#999999"))
## End(Not run)
```

vaeac_train_model Train the Vaeac Model

Description

Function that fits a vaeac model to the given dataset based on the provided parameters, as described in Olsen et al. (2022). Note that all default parameters specified below origin from setup_approach.vaeac() and vaeac_get_extra_para_default().

Usage

```
vaeac_train_model(
  x_train,
 model_description,
  folder_to_save_model,
  cuda,
  n_vaeacs_initialize,
  epochs_initiation_phase,
  epochs,
  epochs_early_stopping,
  save_every_nth_epoch,
  val_ratio,
  val_iwae_n_samples,
  depth,
 width,
  latent_dim,
 lr,
 batch_size,
  running_avg_n_values,
  activation_function,
  skip_conn_layer,
  skip_conn_masked_enc_dec,
  batch_normalization,
  paired_sampling,
 masking_ratio,
 mask_gen_coalitions,
 mask_gen_coalitions_prob,
  sigma_mu,
  sigma_sigma,
```

vaeac_train_model

```
save_data,
log_exp_cont_feat,
which_vaeac_model,
verbose,
seed,
...
```

Arguments

)

x_train	A data.table containing the training data.	Categorical data must have class
	names $1, 2,, K$.	

model_description

String (default is make.names(Sys.time())). String containing, e.g., the name of the data distribution or additional parameter information. Used in the save name of the fitted model. If not provided, then a name will be generated based on base::Sys.time() to ensure a unique name. We use base::make.names() to ensure a valid file name for all operating systems.

```
folder_to_save_model
```

String (default is base::tempdir()). String specifying a path to a folder where the function is to save the fitted vaeac model. Note that the path will be removed from the returned explain() object if vaeac.save_model = FALSE.

cuda Logical (default is FALSE). If TRUE, then the vaeac model will be trained using cuda/GPU. If torch::cuda_is_available() is FALSE, the we fall back to use CPU. If FALSE, we use the CPU. Using a GPU for smaller tabular dataset often do not improve the efficiency. See vignette("installation", package = "torch") fo help to enable running on the GPU (only Linux and Windows).

```
n_vaeacs_initialize
```

Positive integer (default is 4). The number of different vaeac models to initiate in the start. Pick the best performing one after epochs_initiation_phase epochs (default is 2) and continue training that one.

```
epochs_initiation_phase
```

Positive integer (default is 2). The number of epochs to run each of the n_vaeacs_initialize vaeac models before continuing to train only the best performing model.

epochs Positive integer (default is 100). The number of epochs to train the final vaeac model. This includes epochs_initiation_phase, where the default is 2.

epochs_early_stopping

Positive integer (default is NULL). The training stops if there has been no improvement in the validation IWAE for epochs_early_stopping epochs. If the user wants the training process to be solely based on this training criterion, then epochs in explain() should be set to a large number. If NULL, then shapr will internally set epochs_early_stopping = vaeac.epochs such that early stopping does not occur.

save_every_nth_epoch

Positive integer (default is NULL). If provided, then the vaeac model after every save_every_nth_epochth epoch will be saved.

val_ratio	Numeric (default is 0.25). Scalar between 0 and 1 indicating the ratio of in- stances from the input data which will be used as validation data. That is, val_ratio = 0.25 means that 75% of the provided data is used as training data, while the remaining 25% is used as validation data
val iwae n sam	ples
	Positive integer (default is 25). The number of generated samples used to compute the IWAE criterion when validating the vaeac model on the validation data.
depth	Positive integer (default is 3). The number of hidden layers in the neural net- works of the masked encoder, full encoder, and decoder.
width	Positive integer (default is 32). The number of neurons in each hidden layer in the neural networks of the masked encoder, full encoder, and decoder.
latent_dim	Positive integer (default is 8). The number of dimensions in the latent space.
lr	Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam() optimizer.
batch_size	Positive integer (default is 64). The number of samples to include in each batch during the training of the vaeac model. Used in torch::dataloader().
running_avg_n_	values
	running_avg_n_values Positive integer (default is 5). The number of previous IWAE values to include when we compute the running means of the IWAE cri- terion
activation_fun	ction
	An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(), torch::nn_selu(), or torch::nn_sigmoid().
<pre>skip_conn_laye</pre>	r
	Logical (default is TRUE). If TRUE, we apply identity skip connections in each layer, see skip_connection(). That is, we add the input X to the outcome of each hidden layer, so the output becomes $X + activation(WX + b)$.
skip_conn_mask	ed_enc_dec
	Logical (default is TRUE). If TRUE, we apply concatenate skip connections be- tween the layers in the masked encoder and decoder. The first layer of the masked encoder will be linked to the last layer of the decoder. The second layer of the masked encoder will be linked to the second to last layer of the decoder, and so on.
batch_normaliz	ation
	Logical (default is FALSE). If TRUE, we apply batch normalization after the activation function. Note that if skip_conn_layer = TRUE, then the normalization is applied after the inclusion of the skip connection. That is, we batch normalize the whole quantity $X + activation(WX + b)$.
paired_sampling	g
	Logical (default is TRUE). If TRUE, we apply paired sampling to the training batches. That is, the training observations in each batch will be duplicated, where the first instance will be masked by S while the second instance will be masked by \overline{S} . This ensures that the training of the vaeac model becomes more stable as the model has access to the full version of each training observation. However, this will increase the training time due to more complex implementation and doubling the size of each batch. See paired_sampler() for more information.

masking_ratio Numeric (default is 0.5). Probability of masking a feature in the mcar_mask_generator()
 (MCAR = Missing Completely At Random). The MCAR masking scheme en sures that vaeac model can do arbitrary conditioning as all coalitions will be
 trained. masking_ratio will be overruled if mask_gen_coalitions is speci fied.

mask_gen_coalitions

Matrix (default is NULL). Matrix containing the coalitions that the vaeac model will be trained on, see specified_masks_mask_generator(). This parameter is used internally in shapr when we only consider a subset of coalitions/combinations, i.e., when n_combinations $< 2^{n_{features}}$, and for group Shapley, i.e., when group is specified in explain().

mask_gen_coalitions_prob

Numeric array (default is NULL). Array of length equal to the height of mask_gen_coalitions containing the probabilities of sampling the corresponding coalitions in mask_gen_coalitions.

- sigma_mu Numeric (default is 1e4). One of two hyperparameter values in the normalgamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al. (2022).
- sigma_sigma Numeric (default is 1e-4). One of two hyperparameter values in the normalgamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al. (2022).
- save_data Logical (default is FALSE). If TRUE, then the data is stored together with the model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

log_exp_cont_feat

Logical (default is FALSE). If we are to log transform all continuous features before sending the data to vaeac(). The vaeac model creates unbounded Monte Carlo sample values. Thus, if the continuous features are strictly positive (as for, e.g., the Burr distribution and Abalone data set), it can be advantageous to log transform the data to unbounded form before using vaeac. If TRUE, then vaeac_postprocess_data() will take the exp of the results to get back to strictly positive values when using the vaeac model to impute missing values/generate the Monte Carlo samples.

which_vaeac_model

winten_vacae_inc	
	String (default is best). The name of the vaeac model (snapshots from different epochs) to use when generating the Monte Carlo samples. The standard choices are: "best" (epoch with lowest IWAE), "best_running" (epoch with lowest running IWAE, see vaeac.running_avg_n_values), and last (the last epoch). Note that additional choices are available if vaeac.save_every_nth_epoch is provided. For example, if vaeac.save_every_nth_epoch = 5, then vaeac.which_vaeac_model can also take the values "epoch_5", "epoch_10", "epoch_15", and so on.
verbose	Boolean. An integer specifying the level of verbosity. Use 0 (default) for no verbosity, 1 for low verbose, and 2 for high verbose.
seed	Positive integer (default is 1). Seed for reproducibility. Specifies the seed before any randomness based code is being run.

... List of extra parameters, currently not used.

Details

The vaeac model consists of three neural networks, i.e., a masked encoder, a full encoder, and a decoder. The networks have shared depth, width, and activation_function. The encoders maps the x_train to a latent representation of dimension latent_dim, while the decoder maps the latent representations back to the feature space. See Olsen et al. (2022) for more details. The function first initiates n_vaeacs_initialize vaeac models with different randomly initiated network parameter values to remedy poorly initiated values. After epochs_initiation_phase epochs, the n_vaeacs_initialize vaeac models are compared and the function continues to only train the best performing one for a total of epochs epochs. The networks are trained using the ADAM optimizer with the learning rate is lr.

Value

A list containing the training/validation errors and paths to where the vaeac models are saved on the disk.

Author(s)

Lars Henry Berge Olsen

vaeac_train_model_continue

Continue to Train the vaeac Model

Description

Function that loads a previously trained vaeac model and continue the training, either on new data or on the same dataset as it was trained on before. If we are given a new dataset, then we assume that new dataset has the same distribution and one_hot_max_sizes as the original dataset.

Usage

```
vaeac_train_model_continue(
    explanation,
    epochs_new,
    lr_new = NULL,
    x_train = NULL,
    save_data = FALSE,
    verbose = 0,
    seed = 1
)
```

Arguments

explanation	A explain() object and vaeac must be the used approach
epochs_new	Positive integer. The number of extra epochs to conduct.

lr_new	Positive numeric. If we are to overwrite the old learning rate in the adam opti- mizer.
x_train	A data.table containing the training data. Categorical data must have class names $1, 2, \ldots, K$.
save_data	Logical (default is FALSE). If TRUE, then the data is stored together with the model. Useful if one are to continue to train the model later using vaeac_train_model_continue().
verbose	Boolean. An integer specifying the level of verbosity. Use 0 (default) for no verbosity, 1 for low verbose, and 2 for high verbose.
seed	Positive integer (default is 1). Seed for reproducibility. Specifies the seed before any randomness based code is being run.

Value

A list containing the training/validation errors and paths to where the vaeac models are saved on the disk.

Author(s)

Lars Henry Berge Olsen

Index

```
base::make.names(), 52, 55, 65
base::Sys.time(), 52, 55, 65
base::tempdir(), 53, 55, 57, 65
compute_vS, 3
compute_vS(), 23
devtools::release(), 42
explain, 3
explain(), 3, 18, 23, 28, 30, 33, 37, 38, 45,
        49, 51, 53–58, 62, 65, 67, 68
explain_forecast, 12
explain_tripledot_docs, 18
feature_combinations, 21
finalize_explanation, 22
get_cov_mat, 26
get_data_forecast, 27
get_data_specs(), 44
get_model_specs(), 44
get_mu_vec, 28
get_supported_approaches, 28
get_supported_models(), 4, 5, 12, 14
GGally::ggpairs(), 61-63
ggplot2::coord_flip(), 38
ggplot2::element_text(), 38
ggplot2::ggplot(), 30, 34, 38, 39, 58, 59
ggplot2::resolution(), 34, 38
ggplot2::theme(), 38
lag_data, 29
```

Matrix::nearPD(), 26
mcar_mask_generator(), 56, 67

paired_sampler(), 52, 56, 66
parsnip::linear_reg(), 7, 19, 49
plot.shapr, 29
plot_MSEv_eval_crit, 33

plot_SV_several_approaches, 37 process_factor_data, 41 RColorBrewer::RColorBrewer(), 38 recipes::recipe(), 8, 20, 49 reg_forecast_setup, 42 release_questions, 42 rsample::vfold_cv(), 8, 20, 49 setup, 43 setup_approach, 45 setup_approach(), 58 setup_approach.categorical, 5, 14, 18 setup_approach.copula, 5, 14, 18 setup_approach.ctree, 5, 14, 18 setup_approach.empirical, 5, 14, 18 setup_approach.gaussian, 5, 14, 18 setup_approach.independence, 5, 14, 18 setup_approach.regression_separate, 5, 18 setup_approach.regression_surrogate, 5, 18 setup_approach.timeseries, 5, 14, 18 setup_approach.vaeac, 5, 14, 18 $setup_approach.vaeac(), 64$ setup_computation, 51 skip_connection(), 56, 66 specified_masks_mask_generator(), 56, 67

torch::cuda_is_available(), 55, 65 torch::dataloader(), 52, 56, 66 torch::nn_leaky_relu(), 7, 16, 21, 50, 66 torch::nn_module(), 7, 16, 21, 50, 66 torch::nn_relu(), 7, 16, 21, 50, 66 torch::nn_selu(), 7, 16, 21, 50, 66 torch::nn_sigmoid(), 7, 16, 21, 50, 66 torch::optim_adam(), 7, 16, 21, 50, 53, 66

vaeac(), 52, 57, 67

INDEX

```
vaeac_get_data_objects, 51
vaeac_get_evaluation_criteria, 53
vaeac_get_extra_para_default, 54
vaeac_get_extra_para_default(), 7, 16,
21, 50, 64
vaeac_plot_eval_crit, 58
vaeac_plot_imputed_ggpairs, 61
vaeac_postprocess_data(), 52, 57, 67
vaeac_train_model_continue, 68
vaeac_train_model_continue(), 55, 57, 67,
69
```