
Package: shapr (via r-universe)
September 13, 2024

Version 0.2.3.9200

Title Prediction Explanation with Dependence-Aware Shapley Values

Description Complex machine learning models are often hard to
interpret. However, in many situations it is crucial to
understand and explain why a model made a specific prediction.
Shapley values is the only method for such prediction
explanation framework with a solid theoretical foundation.
Previously known methods for estimating the Shapley values do,
however, assume feature independence. This package implements
the method described in Aas, Jullum and Løland (2019)
<arXiv:1903.10464>, which accounts for any feature dependence,
and thereby produces more accurate estimates of the true
Shapley values. An accompanying Python wrapper (shaprpy) is
available on GitHub.

URL https://norskregnesentral.github.io/shapr/,

https://github.com/NorskRegnesentral/shapr/

BugReports https://github.com/NorskRegnesentral/shapr/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

ByteCompile true

Language en-US

RoxygenNote 7.3.1

Depends R (>= 3.5.0)

Imports stats, data.table, Rcpp (>= 0.12.15), Matrix, future.apply,
methods

Suggests ranger, xgboost, mgcv, testthat (>= 3.0.0), knitr, rmarkdown,
roxygen2, ggplot2, gbm, party, partykit, waldo, progressr,
future, ggbeeswarm, vdiffr, forecast, torch, GGally, progress,
coro, parsnip, recipes, workflows, tune, dials, yardstick,
hardhat, rsample, rlang

1

https://arxiv.org/abs/1903.10464
https://norskregnesentral.github.io/shapr/
https://github.com/NorskRegnesentral/shapr/
https://github.com/NorskRegnesentral/shapr/issues

2 Contents

LinkingTo RcppArmadillo, Rcpp

VignetteBuilder knitr

Config/testthat/edition 3

Roxygen list(markdown = TRUE)

Repository https://norskregnesentral.r-universe.dev

RemoteUrl https://github.com/norskregnesentral/shapr

RemoteRef HEAD

RemoteSha ddd32c7c92ba9f37c8505720129d7e10979ccc4c

Contents

compute_vS . 3
explain . 3
explain_forecast . 12
explain_tripledot_docs . 18
feature_combinations . 21
finalize_explanation . 22
get_cov_mat . 26
get_data_forecast . 27
get_mu_vec . 28
get_supported_approaches . 28
lag_data . 29
plot.shapr . 29
plot_MSEv_eval_crit . 33
plot_SV_several_approaches . 37
process_factor_data . 41
reg_forecast_setup . 42
release_questions . 42
setup . 43
setup_approach . 45
setup_computation . 51
vaeac_get_data_objects . 51
vaeac_get_evaluation_criteria . 53
vaeac_get_extra_para_default . 54
vaeac_plot_eval_crit . 58
vaeac_plot_imputed_ggpairs . 61
vaeac_train_model . 64
vaeac_train_model_continue . 68

Index 70

compute_vS 3

compute_vS Computes v(S) for all features subsets S.

Description

Computes v(S) for all features subsets S.

Usage

compute_vS(internal, model, predict_model, method = "future")

Arguments

internal List. Holds all parameters, data, functions and computed objects used within
explain() The list contains one or more of the elements parameters, data,
objects, output.

model Objects. The model object that ought to be explained. See the documentation of
explain() for details.

predict_model Function. The prediction function used when model is not natively supported.
See the documentation of explain() for details.

method Character Indicates whether the lappy method (default) or loop method should
be used.

explain Explain the output of machine learning models with more accurately
estimated Shapley values

Description

Computes dependence-aware Shapley values for observations in x_explain from the specified
model by using the method specified in approach to estimate the conditional expectation.

Usage

explain(
model,
x_explain,
x_train,
approach,
prediction_zero,
n_combinations = NULL,
group = NULL,
n_samples = 1000,
n_batches = NULL,

4 explain

seed = 1,
keep_samp_for_vS = FALSE,
predict_model = NULL,
get_model_specs = NULL,
MSEv_uniform_comb_weights = TRUE,
timing = TRUE,
verbose = 0,
...

)

Arguments

model The model whose predictions we want to explain. Run get_supported_models()
for a table of which models explain supports natively. Unsupported models can
still be explained by passing predict_model and (optionally) get_model_specs,
see details for more information.

x_explain A matrix or data.frame/data.table. Contains the the features, whose predictions
ought to be explained.

x_train Matrix or data.frame/data.table. Contains the data used to estimate the (condi-
tional) distributions for the features needed to properly estimate the conditional
expectations in the Shapley formula.

approach Character vector of length 1 or one less than the number of features. All ele-
ments should, either be "gaussian", "copula", "empirical", "ctree", "vaeac",
"categorical", "timeseries", "independence", "regression_separate",
or "regression_surrogate". The two regression approaches can not be com-
bined with any other approach. See details for more information.

prediction_zero

Numeric. The prediction value for unseen data, i.e. an estimate of the expected
prediction without conditioning on any features. Typically we set this value
equal to the mean of the response variable in our training data, but other choices
such as the mean of the predictions in the training data are also reasonable.

n_combinations Integer. If group = NULL, n_combinations represents the number of unique fea-
ture combinations to sample. If group != NULL, n_combinations represents the
number of unique group combinations to sample. If n_combinations = NULL,
the exact method is used and all combinations are considered. The maximum
number of combinations equals 2^m, where m is the number of features.

group List. If NULL regular feature wise Shapley values are computed. If provided,
group wise Shapley values are computed. group then has length equal to the
number of groups. The list element contains character vectors with the features
included in each of the different groups.

n_samples Positive integer. Indicating the maximum number of samples to use in the Monte
Carlo integration for every conditional expectation. See also details.

n_batches Positive integer (or NULL). Specifies how many batches the total number of fea-
ture combinations should be split into when calculating the contribution function
for each test observation. The default value is NULL which uses a reasonable
trade-off between RAM allocation and computation speed, which depends on

explain 5

approach and n_combinations. For models with many features, increasing
the number of batches reduces the RAM allocation significantly. This typically
comes with a small increase in computation time.

seed Positive integer. Specifies the seed before any randomness based code is being
run. If NULL the seed will be inherited from the calling environment.

keep_samp_for_vS

Logical. Indicates whether the samples used in the Monte Carlo estimation of
v_S should be returned (in internal$output)

predict_model Function. The prediction function used when model is not natively supported.
(Run get_supported_models() for a list of natively supported models.) The
function must have two arguments, model and newdata which specify, respec-
tively, the model and a data.frame/data.table to compute predictions for. The
function must give the prediction as a numeric vector. NULL (the default) uses
functions specified internally. Can also be used to override the default function
for natively supported model classes.

get_model_specs

Function. An optional function for checking model/data consistency when model
is not natively supported. (Run get_supported_models() for a list of natively
supported models.) The function takes model as argument and provides a list
with 3 elements:

labels Character vector with the names of each feature.
classes Character vector with the classes of each features.
factor_levels Character vector with the levels for any categorical features.

If NULL (the default) internal functions are used for natively supported model
classes, and the checking is disabled for unsupported model classes. Can also
be used to override the default function for natively supported model classes.

MSEv_uniform_comb_weights

Logical. If TRUE (default), then the function weights the combinations uniformly
when computing the MSEv criterion. If FALSE, then the function use the Shapley
kernel weights to weight the combinations when computing the MSEv criterion.
Note that the Shapley kernel weights are replaced by the sampling frequency
when not all combinations are considered.

timing Logical. Whether the timing of the different parts of the explain() should
saved in the model object.

verbose An integer specifying the level of verbosity. If 0, shapr will stay silent. If 1,
it will print information about performance. If 2, some additional information
will be printed out. Use 0 (default) for no verbosity, 1 for low verbose, and 2 for
high verbose. TODO: Make this clearer when we end up fixing this and if they
should force a progressr bar.

... Arguments passed on to setup_approach.empirical, setup_approach.independence,
setup_approach.gaussian, setup_approach.copula, setup_approach.ctree,
setup_approach.vaeac, setup_approach.categorical, setup_approach.regression_separate,
setup_approach.regression_surrogate, setup_approach.timeseries

empirical.type Character. (default = "fixed_sigma") Should be equal to ei-
ther "independence","fixed_sigma", "AICc_each_k" "AICc_full". TODO:
Describe better what the methods do here.

6 explain

empirical.eta Numeric. (default = 0.95) Needs to be 0 < eta <= 1. Repre-
sents the minimum proportion of the total empirical weight that data sam-
ples should use. If e.g. eta = .8 we will choose the K samples with the
largest weight so that the sum of the weights accounts for 80\ eta is the η
parameter in equation (15) of Aas et al (2021).

empirical.fixed_sigma Positive numeric scalar. (default = 0.1) Represents
the kernel bandwidth in the distance computation used when condition-
ing on all different combinations. Only used when empirical.type =
"fixed_sigma"

empirical.n_samples_aicc Positive integer. (default = 1000) Number of
samples to consider in AICc optimization. Only used for empirical.type
is either "AICc_each_k" or "AICc_full".

empirical.eval_max_aicc Positive integer. (default = 20) Maximum number
of iterations when optimizing the AICc. Only used for empirical.type is
either "AICc_each_k" or "AICc_full".

empirical.start_aicc Numeric. (default = 0.1) Start value of the sigma pa-
rameter when optimizing the AICc. Only used for empirical.type is ei-
ther "AICc_each_k" or "AICc_full".

empirical.cov_mat Numeric matrix. (Optional, default = NULL) Containing
the covariance matrix of the data generating distribution used to define the
Mahalanobis distance. NULL means it is estimated from x_train.

internal Not used.
gaussian.mu Numeric vector. (Optional) Containing the mean of the data gen-

erating distribution. NULL means it is estimated from the x_train.
gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance ma-

trix of the data generating distribution. NULL means it is estimated from the
x_train.

ctree.mincriterion Numeric scalar or vector. (default = 0.95) Either a scalar
or vector of length equal to the number of features in the model. Value is
equal to 1 - α where α is the nominal level of the conditional independence
tests. If it is a vector, this indicates which value to use when conditioning
on various numbers of features.

ctree.minsplit Numeric scalar. (default = 20) Determines minimum value
that the sum of the left and right daughter nodes required for a split.

ctree.minbucket Numeric scalar. (default = 7) Determines the minimum sum
of weights in a terminal node required for a split

ctree.sample Boolean. (default = TRUE) If TRUE, then the method always
samples n_samples observations from the leaf nodes (with replacement).
If FALSE and the number of observations in the leaf node is less than
n_samples, the method will take all observations in the leaf. If FALSE
and the number of observations in the leaf node is more than n_samples,
the method will sample n_samples observations (with replacement). This
means that there will always be sampling in the leaf unless sample = FALSE
AND the number of obs in the node is less than n_samples.

vaeac.depth Positive integer (default is 3). The number of hidden layers in the
neural networks of the masked encoder, full encoder, and decoder.

explain 7

vaeac.width Positive integer (default is 32). The number of neurons in each
hidden layer in the neural networks of the masked encoder, full encoder,
and decoder.

vaeac.latent_dim Positive integer (default is 8). The number of dimensions
in the latent space.

vaeac.lr Positive numeric (default is 0.001). The learning rate used in the
torch::optim_adam() optimizer.

vaeac.activation_function An torch::nn_module() representing an acti-
vation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(),
torch::nn_selu(), or torch::nn_sigmoid().

vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of
different vaeac models to initiate in the start. Pick the best performing
one after vaeac.extra_parameters$epochs_initiation_phase epochs
(default is 2) and continue training that one.

vaeac.epochs Positive integer (default is 100). The number of epochs to train
the final vaeac model. This includes vaeac.extra_parameters$epochs_initiation_phase,
where the default is 2.

vaeac.extra_parameters Named list with extra parameters to the vaeac ap-
proach. See vaeac_get_extra_para_default() for description of possi-
ble additional parameters and their default values.

categorical.joint_prob_dt Data.table. (Optional) Containing the joint prob-
ability distribution for each combination of feature values. NULL means it is
estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If joint_probability_dt
is not supplied, probabilities/frequencies are estimated using x_train. If
certain observations occur in x_train and NOT in x_explain, then epsilon
is used as the proportion of times that these observations occurs in the train-
ing data. In theory, this proportion should be zero, but this causes an error
later in the Shapley computation.

regression.model A tidymodels object of class model_specs. Default is a
linear regression model, i.e., parsnip::linear_reg(). See tidymodels for
all possible models, and see the vignette for how to add new/own models.
Note, to make it easier to call explain() from Python, the regression.model
parameter can also be a string specifying the model which will be parsed
and evaluated. For example, "parsnip::rand_forest(mtry = hardhat::tune(), trees = 100, engine = "ranger", mode = "regression")"
is also a valid input. It is essential to include the package prefix if the pack-
age is not loaded.

regression.tune_values Either NULL (default), a data.frame/data.table/tibble,
or a function. The data.frame must contain the possible hyperparameter
value combinations to try. The column names must match the names of the
tuneable parameters specified in regression.model. If regression.tune_values
is a function, then it should take one argument x which is the training data
for the current combination/coalition and returns a data.frame/data.table/tibble
with the properties described above. Using a function allows the hyper-
parameter values to change based on the size of the combination. See
the regression vignette for several examples. Note, to make it easier to
call explain() from Python, the regression.tune_values can also be a

https://www.tidymodels.org/find/parsnip/

8 explain

string containing an R function. For example, "function(x) return(dials::grid_regular(dials::mtry(c(1,
ncol(x)))), levels = 3))" is also a valid input. It is essential to include
the package prefix if the package is not loaded.

regression.vfold_cv_para Either NULL (default) or a named list containing
the parameters to be sent to rsample::vfold_cv(). See the regression
vignette for several examples.

regression.recipe_func Either NULL (default) or a function that that takes in
a recipes::recipe() object and returns a modified recipes::recipe()
with potentially additional recipe steps. See the regression vignette for sev-
eral examples. Note, to make it easier to call explain() from Python, the
regression.recipe_func can also be a string containing an R function.
For example, "function(recipe) return(recipes::step_ns(recipe,
recipes::all_numeric_predictors(), deg_free = 2))" is also a valid
input. It is essential to include the package prefix if the package is not
loaded.

regression.surrogate_n_comb Integer (default is internal$parameters$used_n_combinations)
specifying the number of unique combinations/coalitions to apply to each
training observation. Maximum allowed value is "internal$parameters$used_n_combinations
- 2". By default, we use all coalitions, but this can take a lot of memory in
larger dimensions. Note that by "all", we mean all coalitions chosen by
shapr to be used. This will be all 2nfeatures coalitions (minus empty and
grand coalition) if shapr is in the exact mode. If the user sets a lower value
than internal$parameters$used_n_combinations, then we sample this
amount of unique coalitions separately for each training observations. That
is, on average, all coalitions should be equally trained.

timeseries.fixed_sigma_vec Numeric. (Default = 2) Represents the ker-
nel bandwidth in the distance computation. TODO: What length should it
have? 1?

timeseries.bounds Numeric vector of length two. (Default = c(NULL, NULL))
If one or both of these bounds are not NULL, we restrict the sampled time
series to be between these bounds. This is useful if the underlying time
series are scaled between 0 and 1, for example.

Details

The most important thing to notice is that shapr has implemented eight different Monte Carlo-
based approaches for estimating the conditional distributions of the data, namely "empirical",
"gaussian", "copula", "ctree", "vaeac", "categorical", "timeseries", and "independence".
shapr has also implemented two regression-based approaches "regression_separate" and "regression_surrogate",
and see the separate vignette on the regression-based approaches for more information. In addition,
the user also has the option of combining the different Monte Carlo-based approaches. E.g., if
you’re in a situation where you have trained a model that consists of 10 features, and you’d like
to use the "gaussian" approach when you condition on a single feature, the "empirical" ap-
proach if you condition on 2-5 features, and "copula" version if you condition on more than 5
features this can be done by simply passing approach = c("gaussian", rep("empirical", 4),
rep("copula", 4)). If "approach[i]" = "gaussian" means that you’d like to use the "gaussian"
approach when conditioning on i features. Conditioning on all features needs no approach as that
is given by the complete prediction itself, and should thus not be part of the vector.

explain 9

For approach="ctree", n_samples corresponds to the number of samples from the leaf node (see
an exception related to the sample argument). For approach="empirical", n_samples is the K
parameter in equations (14-15) of Aas et al. (2021), i.e. the maximum number of observations (with
largest weights) that is used, see also the empirical.eta argument.

Value

Object of class c("shapr", "list"). Contains the following items:

shapley_values data.table with the estimated Shapley values

internal List with the different parameters, data and functions used internally

pred_explain Numeric vector with the predictions for the explained observations

MSEv List with the values of the MSEv evaluation criterion for the approach.

shapley_values is a data.table where the number of rows equals the number of observations you’d
like to explain, and the number of columns equals m +1, where m equals the total number of features
in your model.

If shapley_values[i, j + 1] > 0 it indicates that the j-th feature increased the prediction for the
i-th observation. Likewise, if shapley_values[i, j + 1] < 0 it indicates that the j-th feature de-
creased the prediction for the i-th observation. The magnitude of the value is also important to no-
tice. E.g. if shapley_values[i, k + 1] and shapley_values[i, j + 1] are greater than 0, where
j != k, and shapley_values[i, k + 1] > shapley_values[i, j + 1] this indicates that feature j
and k both increased the value of the prediction, but that the effect of the k-th feature was larger
than the j-th feature.

The first column in dt, called none, is the prediction value not assigned to any of the features (ϕ0).
It’s equal for all observations and set by the user through the argument prediction_zero. The
difference between the prediction and none is distributed among the other features. In theory this
value should be the expected prediction without conditioning on any features. Typically we set this
value equal to the mean of the response variable in our training data, but other choices such as the
mean of the predictions in the training data are also reasonable.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

Aas, K., Jullum, M., & L<U+00F8>land, A. (2021). Explaining individual predictions when fea-
tures are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298,
103502.

Examples

Load example data
data("airquality")
airquality <- airquality[complete.cases(airquality),]
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

10 explain

Split data into test- and training data
data_train <- head(airquality, -3)
data_explain <- tail(airquality, 3)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)

Explain predictions
p <- mean(data_train[, y_var])

Empirical approach
explain1 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "empirical",
prediction_zero = p,
n_samples = 1e2

)

Gaussian approach
explain2 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
prediction_zero = p,
n_samples = 1e2

)

Gaussian copula approach
explain3 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "copula",
prediction_zero = p,
n_samples = 1e2

)

ctree approach
explain4 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "ctree",
prediction_zero = p,
n_samples = 1e2

)

explain 11

Combined approach
approach <- c("gaussian", "gaussian", "empirical")
explain5 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = approach,
prediction_zero = p,
n_samples = 1e2

)

Print the Shapley values
print(explain1$shapley_values)

Plot the results
if (requireNamespace("ggplot2", quietly = TRUE)) {

plot(explain1)
plot(explain1, plot_type = "waterfall")

}

Group-wise explanations
group_list <- list(A = c("Temp", "Month"), B = c("Wind", "Solar.R"))

explain_groups <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
group = group_list,
approach = "empirical",
prediction_zero = p,
n_samples = 1e2

)
print(explain_groups$shapley_values)

Separate and surrogate regression approaches with linear regression models.
More complex regression models can be used, and we can use CV to
tune the hyperparameters of the regression models and preprocess
the data before sending it to the model. See the regression vignette
(Shapley value explanations using the regression paradigm) for more
details about the `regression_separate` and `regression_surrogate` approaches.
explain_separate_lm <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
prediction_zero = p,
approach = "regression_separate",
regression.model = parsnip::linear_reg()

)

explain_surrogate_lm <- explain(
model = model,
x_explain = x_explain,

12 explain_forecast

x_train = x_train,
prediction_zero = p,
approach = "regression_surrogate",
regression.model = parsnip::linear_reg()

)

explain_forecast Explain a forecast from a time series model using Shapley values.

Description

Computes dependence-aware Shapley values for observations in explain_idx from the specified
model by using the method specified in approach to estimate the conditional expectation.

Usage

explain_forecast(
model,
y,
xreg = NULL,
train_idx = NULL,
explain_idx,
explain_y_lags,
explain_xreg_lags = explain_y_lags,
horizon,
approach,
prediction_zero,
n_combinations = NULL,
group_lags = TRUE,
group = NULL,
n_samples = 1000,
n_batches = NULL,
seed = 1,
keep_samp_for_vS = FALSE,
predict_model = NULL,
get_model_specs = NULL,
timing = TRUE,
verbose = 0,
...

)

Arguments

model The model whose predictions we want to explain. Run get_supported_models()
for a table of which models explain supports natively. Unsupported models can
still be explained by passing predict_model and (optionally) get_model_specs,
see details for more information.

explain_forecast 13

y Matrix, data.frame/data.table or a numeric vector. Contains the endogenous
variables used to estimate the (conditional) distributions needed to properly es-
timate the conditional expectations in the Shapley formula including the obser-
vations to be explained.

xreg Matrix, data.frame/data.table or a numeric vector. Contains the exogenous vari-
ables used to estimate the (conditional) distributions needed to properly estimate
the conditional expectations in the Shapley formula including the observations
to be explained. As exogenous variables are used contemporaneusly when pro-
ducing a forecast, this item should contain nrow(y) + horizon rows.

train_idx Numeric vector The row indices in data and reg denoting points in time to use
when estimating the conditional expectations in the Shapley value formula. If
train_idx = NULL (default) all indices not selected to be explained will be used.

explain_idx Numeric vector The row indices in data and reg denoting points in time to ex-
plain.

explain_y_lags Numeric vector. Denotes the number of lags that should be used for each vari-
able in y when making a forecast.

explain_xreg_lags

Numeric vector. If xreg != NULL, denotes the number of lags that should be
used for each variable in xreg when making a forecast.

horizon Numeric. The forecast horizon to explain. Passed to the predict_model func-
tion.

approach Character vector of length 1 or one less than the number of features. All ele-
ments should, either be "gaussian", "copula", "empirical", "ctree", "vaeac",
"categorical", "timeseries", "independence", "regression_separate",
or "regression_surrogate". The two regression approaches can not be com-
bined with any other approach. See details for more information.

prediction_zero

Numeric. The prediction value for unseen data, i.e. an estimate of the expected
prediction without conditioning on any features. Typically we set this value
equal to the mean of the response variable in our training data, but other choices
such as the mean of the predictions in the training data are also reasonable.

n_combinations Integer. If group = NULL, n_combinations represents the number of unique fea-
ture combinations to sample. If group != NULL, n_combinations represents the
number of unique group combinations to sample. If n_combinations = NULL,
the exact method is used and all combinations are considered. The maximum
number of combinations equals 2^m, where m is the number of features.

group_lags Logical. If TRUE all lags of each variable are grouped together and explained as
a group. If FALSE all lags of each variable are explained individually.

group List. If NULL regular feature wise Shapley values are computed. If provided,
group wise Shapley values are computed. group then has length equal to the
number of groups. The list element contains character vectors with the features
included in each of the different groups.

n_samples Positive integer. Indicating the maximum number of samples to use in the Monte
Carlo integration for every conditional expectation. See also details.

14 explain_forecast

n_batches Positive integer (or NULL). Specifies how many batches the total number of fea-
ture combinations should be split into when calculating the contribution function
for each test observation. The default value is NULL which uses a reasonable
trade-off between RAM allocation and computation speed, which depends on
approach and n_combinations. For models with many features, increasing
the number of batches reduces the RAM allocation significantly. This typically
comes with a small increase in computation time.

seed Positive integer. Specifies the seed before any randomness based code is being
run. If NULL the seed will be inherited from the calling environment.

keep_samp_for_vS

Logical. Indicates whether the samples used in the Monte Carlo estimation of
v_S should be returned (in internal$output)

predict_model Function. The prediction function used when model is not natively supported.
(Run get_supported_models() for a list of natively supported models.) The
function must have two arguments, model and newdata which specify, respec-
tively, the model and a data.frame/data.table to compute predictions for. The
function must give the prediction as a numeric vector. NULL (the default) uses
functions specified internally. Can also be used to override the default function
for natively supported model classes.

get_model_specs

Function. An optional function for checking model/data consistency when model
is not natively supported. (Run get_supported_models() for a list of natively
supported models.) The function takes model as argument and provides a list
with 3 elements:

labels Character vector with the names of each feature.
classes Character vector with the classes of each features.
factor_levels Character vector with the levels for any categorical features.

If NULL (the default) internal functions are used for natively supported model
classes, and the checking is disabled for unsupported model classes. Can also
be used to override the default function for natively supported model classes.

timing Logical. Whether the timing of the different parts of the explain() should
saved in the model object.

verbose An integer specifying the level of verbosity. If 0, shapr will stay silent. If 1,
it will print information about performance. If 2, some additional information
will be printed out. Use 0 (default) for no verbosity, 1 for low verbose, and 2 for
high verbose. TODO: Make this clearer when we end up fixing this and if they
should force a progressr bar.

... Arguments passed on to setup_approach.empirical, setup_approach.independence,
setup_approach.gaussian, setup_approach.copula, setup_approach.ctree,
setup_approach.vaeac, setup_approach.categorical, setup_approach.timeseries

empirical.type Character. (default = "fixed_sigma") Should be equal to ei-
ther "independence","fixed_sigma", "AICc_each_k" "AICc_full". TODO:
Describe better what the methods do here.

empirical.eta Numeric. (default = 0.95) Needs to be 0 < eta <= 1. Repre-
sents the minimum proportion of the total empirical weight that data sam-
ples should use. If e.g. eta = .8 we will choose the K samples with the

explain_forecast 15

largest weight so that the sum of the weights accounts for 80\ eta is the η
parameter in equation (15) of Aas et al (2021).

empirical.fixed_sigma Positive numeric scalar. (default = 0.1) Represents
the kernel bandwidth in the distance computation used when condition-
ing on all different combinations. Only used when empirical.type =
"fixed_sigma"

empirical.n_samples_aicc Positive integer. (default = 1000) Number of
samples to consider in AICc optimization. Only used for empirical.type
is either "AICc_each_k" or "AICc_full".

empirical.eval_max_aicc Positive integer. (default = 20) Maximum number
of iterations when optimizing the AICc. Only used for empirical.type is
either "AICc_each_k" or "AICc_full".

empirical.start_aicc Numeric. (default = 0.1) Start value of the sigma pa-
rameter when optimizing the AICc. Only used for empirical.type is ei-
ther "AICc_each_k" or "AICc_full".

empirical.cov_mat Numeric matrix. (Optional, default = NULL) Containing
the covariance matrix of the data generating distribution used to define the
Mahalanobis distance. NULL means it is estimated from x_train.

internal Not used.
gaussian.mu Numeric vector. (Optional) Containing the mean of the data gen-

erating distribution. NULL means it is estimated from the x_train.
gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance ma-

trix of the data generating distribution. NULL means it is estimated from the
x_train.

ctree.mincriterion Numeric scalar or vector. (default = 0.95) Either a scalar
or vector of length equal to the number of features in the model. Value is
equal to 1 - α where α is the nominal level of the conditional independence
tests. If it is a vector, this indicates which value to use when conditioning
on various numbers of features.

ctree.minsplit Numeric scalar. (default = 20) Determines minimum value
that the sum of the left and right daughter nodes required for a split.

ctree.minbucket Numeric scalar. (default = 7) Determines the minimum sum
of weights in a terminal node required for a split

ctree.sample Boolean. (default = TRUE) If TRUE, then the method always
samples n_samples observations from the leaf nodes (with replacement).
If FALSE and the number of observations in the leaf node is less than
n_samples, the method will take all observations in the leaf. If FALSE
and the number of observations in the leaf node is more than n_samples,
the method will sample n_samples observations (with replacement). This
means that there will always be sampling in the leaf unless sample = FALSE
AND the number of obs in the node is less than n_samples.

vaeac.depth Positive integer (default is 3). The number of hidden layers in the
neural networks of the masked encoder, full encoder, and decoder.

vaeac.width Positive integer (default is 32). The number of neurons in each
hidden layer in the neural networks of the masked encoder, full encoder,
and decoder.

16 explain_forecast

vaeac.latent_dim Positive integer (default is 8). The number of dimensions
in the latent space.

vaeac.lr Positive numeric (default is 0.001). The learning rate used in the
torch::optim_adam() optimizer.

vaeac.activation_function An torch::nn_module() representing an acti-
vation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(),
torch::nn_selu(), or torch::nn_sigmoid().

vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of
different vaeac models to initiate in the start. Pick the best performing
one after vaeac.extra_parameters$epochs_initiation_phase epochs
(default is 2) and continue training that one.

vaeac.epochs Positive integer (default is 100). The number of epochs to train
the final vaeac model. This includes vaeac.extra_parameters$epochs_initiation_phase,
where the default is 2.

vaeac.extra_parameters Named list with extra parameters to the vaeac ap-
proach. See vaeac_get_extra_para_default() for description of possi-
ble additional parameters and their default values.

categorical.joint_prob_dt Data.table. (Optional) Containing the joint prob-
ability distribution for each combination of feature values. NULL means it is
estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If joint_probability_dt
is not supplied, probabilities/frequencies are estimated using x_train. If
certain observations occur in x_train and NOT in x_explain, then epsilon
is used as the proportion of times that these observations occurs in the train-
ing data. In theory, this proportion should be zero, but this causes an error
later in the Shapley computation.

timeseries.fixed_sigma_vec Numeric. (Default = 2) Represents the ker-
nel bandwidth in the distance computation. TODO: What length should it
have? 1?

timeseries.bounds Numeric vector of length two. (Default = c(NULL, NULL))
If one or both of these bounds are not NULL, we restrict the sampled time
series to be between these bounds. This is useful if the underlying time
series are scaled between 0 and 1, for example.

Details

This function explains a forecast of length horizon. The argument train_idx is analogous to
x_train in explain(), however, it just contains the time indices of where in the data the forecast
should start for each training sample. In the same way explain_idx defines the time index (indices)
which will precede a forecast to be explained.

As any autoregressive forecast model will require a set of lags to make a forecast at an arbitrary
point in time, explain_y_lags and explain_xreg_lags define how many lags are required to
"refit" the model at any given time index. This allows the different approaches to work in the same
way they do for time-invariant models.

Value

Object of class c("shapr", "list"). Contains the following items:

explain_forecast 17

shapley_values data.table with the estimated Shapley values

internal List with the different parameters, data and functions used internally

pred_explain Numeric vector with the predictions for the explained observations

MSEv List with the values of the MSEv evaluation criterion for the approach.

shapley_values is a data.table where the number of rows equals the number of observations you’d
like to explain, and the number of columns equals m +1, where m equals the total number of features
in your model.

If shapley_values[i, j + 1] > 0 it indicates that the j-th feature increased the prediction for the
i-th observation. Likewise, if shapley_values[i, j + 1] < 0 it indicates that the j-th feature de-
creased the prediction for the i-th observation. The magnitude of the value is also important to no-
tice. E.g. if shapley_values[i, k + 1] and shapley_values[i, j + 1] are greater than 0, where
j != k, and shapley_values[i, k + 1] > shapley_values[i, j + 1] this indicates that feature j
and k both increased the value of the prediction, but that the effect of the k-th feature was larger
than the j-th feature.

The first column in dt, called none, is the prediction value not assigned to any of the features (ϕ0).
It’s equal for all observations and set by the user through the argument prediction_zero. The
difference between the prediction and none is distributed among the other features. In theory this
value should be the expected prediction without conditioning on any features. Typically we set this
value equal to the mean of the response variable in our training data, but other choices such as the
mean of the predictions in the training data are also reasonable.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

Aas, K., Jullum, M., & L<U+00F8>land, A. (2021). Explaining individual predictions when fea-
tures are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298,
103502.

Examples

Load example data
data("airquality")
data <- data.table::as.data.table(airquality)

Fit an AR(2) model.
model_ar_temp <- ar(data$Temp, order = 2)

Calculate the zero prediction values for a three step forecast.
p0_ar <- rep(mean(data$Temp), 3)

Empirical approach, explaining forecasts starting at T = 152 and T = 153.
explain_forecast(

model = model_ar_temp,
y = data[, "Temp"],
train_idx = 2:151,

18 explain_tripledot_docs

explain_idx = 152:153,
explain_y_lags = 2,
horizon = 3,
approach = "empirical",
prediction_zero = p0_ar,
group_lags = FALSE

)

explain_tripledot_docs

Documentation of the approach-specific parameters in explain()

Description

This helper function displays the specific arguments applicable to the different approaches. Note
that when calling explain() from Python, the parameters are renamed from the form approach.parameter_name
to approach_parameter_name. That is, an underscore has replaced the dot as the dot is reserved in
Python.

Usage

explain_tripledot_docs(...)

Arguments

... Arguments passed on to setup_approach.independence, setup_approach.empirical,
setup_approach.categorical, setup_approach.copula, setup_approach.ctree,
setup_approach.gaussian, setup_approach.regression_separate, setup_approach.regression_surrogate,
setup_approach.timeseries, setup_approach.vaeac

empirical.type Character. (default = "fixed_sigma") Should be equal to ei-
ther "independence","fixed_sigma", "AICc_each_k" "AICc_full". TODO:
Describe better what the methods do here.

empirical.eta Numeric. (default = 0.95) Needs to be 0 < eta <= 1. Repre-
sents the minimum proportion of the total empirical weight that data sam-
ples should use. If e.g. eta = .8 we will choose the K samples with the
largest weight so that the sum of the weights accounts for 80\ eta is the η
parameter in equation (15) of Aas et al (2021).

empirical.fixed_sigma Positive numeric scalar. (default = 0.1) Represents
the kernel bandwidth in the distance computation used when condition-
ing on all different combinations. Only used when empirical.type =
"fixed_sigma"

empirical.n_samples_aicc Positive integer. (default = 1000) Number of
samples to consider in AICc optimization. Only used for empirical.type
is either "AICc_each_k" or "AICc_full".

explain_tripledot_docs 19

empirical.eval_max_aicc Positive integer. (default = 20) Maximum number
of iterations when optimizing the AICc. Only used for empirical.type is
either "AICc_each_k" or "AICc_full".

empirical.start_aicc Numeric. (default = 0.1) Start value of the sigma pa-
rameter when optimizing the AICc. Only used for empirical.type is ei-
ther "AICc_each_k" or "AICc_full".

empirical.cov_mat Numeric matrix. (Optional, default = NULL) Containing
the covariance matrix of the data generating distribution used to define the
Mahalanobis distance. NULL means it is estimated from x_train.

categorical.joint_prob_dt Data.table. (Optional) Containing the joint prob-
ability distribution for each combination of feature values. NULL means it is
estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If joint_probability_dt
is not supplied, probabilities/frequencies are estimated using x_train. If
certain observations occur in x_train and NOT in x_explain, then epsilon
is used as the proportion of times that these observations occurs in the train-
ing data. In theory, this proportion should be zero, but this causes an error
later in the Shapley computation.

ctree.mincriterion Numeric scalar or vector. (default = 0.95) Either a scalar
or vector of length equal to the number of features in the model. Value is
equal to 1 - α where α is the nominal level of the conditional independence
tests. If it is a vector, this indicates which value to use when conditioning
on various numbers of features.

ctree.minsplit Numeric scalar. (default = 20) Determines minimum value
that the sum of the left and right daughter nodes required for a split.

ctree.minbucket Numeric scalar. (default = 7) Determines the minimum sum
of weights in a terminal node required for a split

ctree.sample Boolean. (default = TRUE) If TRUE, then the method always
samples n_samples observations from the leaf nodes (with replacement).
If FALSE and the number of observations in the leaf node is less than
n_samples, the method will take all observations in the leaf. If FALSE
and the number of observations in the leaf node is more than n_samples,
the method will sample n_samples observations (with replacement). This
means that there will always be sampling in the leaf unless sample = FALSE
AND the number of obs in the node is less than n_samples.

gaussian.mu Numeric vector. (Optional) Containing the mean of the data gen-
erating distribution. NULL means it is estimated from the x_train.

gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance ma-
trix of the data generating distribution. NULL means it is estimated from the
x_train.

regression.model A tidymodels object of class model_specs. Default is a
linear regression model, i.e., parsnip::linear_reg(). See tidymodels for
all possible models, and see the vignette for how to add new/own models.
Note, to make it easier to call explain() from Python, the regression.model
parameter can also be a string specifying the model which will be parsed
and evaluated. For example, "parsnip::rand_forest(mtry = hardhat::tune(), trees = 100, engine = "ranger", mode = "regression")"

https://www.tidymodels.org/find/parsnip/

20 explain_tripledot_docs

is also a valid input. It is essential to include the package prefix if the pack-
age is not loaded.

regression.tune_values Either NULL (default), a data.frame/data.table/tibble,
or a function. The data.frame must contain the possible hyperparameter
value combinations to try. The column names must match the names of the
tuneable parameters specified in regression.model. If regression.tune_values
is a function, then it should take one argument x which is the training data
for the current combination/coalition and returns a data.frame/data.table/tibble
with the properties described above. Using a function allows the hyper-
parameter values to change based on the size of the combination. See
the regression vignette for several examples. Note, to make it easier to
call explain() from Python, the regression.tune_values can also be a
string containing an R function. For example, "function(x) return(dials::grid_regular(dials::mtry(c(1,
ncol(x)))), levels = 3))" is also a valid input. It is essential to include
the package prefix if the package is not loaded.

regression.vfold_cv_para Either NULL (default) or a named list containing
the parameters to be sent to rsample::vfold_cv(). See the regression
vignette for several examples.

regression.recipe_func Either NULL (default) or a function that that takes in
a recipes::recipe() object and returns a modified recipes::recipe()
with potentially additional recipe steps. See the regression vignette for sev-
eral examples. Note, to make it easier to call explain() from Python, the
regression.recipe_func can also be a string containing an R function.
For example, "function(recipe) return(recipes::step_ns(recipe,
recipes::all_numeric_predictors(), deg_free = 2))" is also a valid
input. It is essential to include the package prefix if the package is not
loaded.

regression.surrogate_n_comb Integer (default is internal$parameters$used_n_combinations)
specifying the number of unique combinations/coalitions to apply to each
training observation. Maximum allowed value is "internal$parameters$used_n_combinations
- 2". By default, we use all coalitions, but this can take a lot of memory in
larger dimensions. Note that by "all", we mean all coalitions chosen by
shapr to be used. This will be all 2nfeatures coalitions (minus empty and
grand coalition) if shapr is in the exact mode. If the user sets a lower value
than internal$parameters$used_n_combinations, then we sample this
amount of unique coalitions separately for each training observations. That
is, on average, all coalitions should be equally trained.

timeseries.fixed_sigma_vec Numeric. (Default = 2) Represents the ker-
nel bandwidth in the distance computation. TODO: What length should it
have? 1?

timeseries.bounds Numeric vector of length two. (Default = c(NULL, NULL))
If one or both of these bounds are not NULL, we restrict the sampled time
series to be between these bounds. This is useful if the underlying time
series are scaled between 0 and 1, for example.

vaeac.depth Positive integer (default is 3). The number of hidden layers in the
neural networks of the masked encoder, full encoder, and decoder.

vaeac.width Positive integer (default is 32). The number of neurons in each
hidden layer in the neural networks of the masked encoder, full encoder,

feature_combinations 21

and decoder.
vaeac.latent_dim Positive integer (default is 8). The number of dimensions

in the latent space.
vaeac.lr Positive numeric (default is 0.001). The learning rate used in the

torch::optim_adam() optimizer.
vaeac.activation_function An torch::nn_module() representing an acti-

vation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(),
torch::nn_selu(), or torch::nn_sigmoid().

vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of
different vaeac models to initiate in the start. Pick the best performing
one after vaeac.extra_parameters$epochs_initiation_phase epochs
(default is 2) and continue training that one.

vaeac.epochs Positive integer (default is 100). The number of epochs to train
the final vaeac model. This includes vaeac.extra_parameters$epochs_initiation_phase,
where the default is 2.

vaeac.extra_parameters Named list with extra parameters to the vaeac ap-
proach. See vaeac_get_extra_para_default() for description of possi-
ble additional parameters and their default values.

Author(s)

Lars Henry Berge Olsen and Martin Jullum

feature_combinations Define feature combinations, and fetch additional information about
each unique combination

Description

Define feature combinations, and fetch additional information about each unique combination

Usage

feature_combinations(
m,
exact = TRUE,
n_combinations = 200,
weight_zero_m = 10^6,
group_num = NULL

)

Arguments

m Positive integer. Total number of features.

exact Logical. If TRUE all 2^m combinations are generated, otherwise a subsample of
the combinations is used.

22 finalize_explanation

n_combinations Positive integer. Note that if exact = TRUE, n_combinations is ignored. How-
ever, if m > 12 you’ll need to add a positive integer value for n_combinations.

weight_zero_m Numeric. The value to use as a replacement for infinite combination weights
when doing numerical operations.

group_num List. Contains vector of integers indicating the feature numbers for the different
groups.

Value

A data.table that contains the following columns:

id_combination Positive integer. Represents a unique key for each combination. Note that the
table is sorted by id_combination, so that is always equal to x[["id_combination"]] =
1:nrow(x).

features List. Each item of the list is an integer vector where features[[i]] represents the in-
dices of the features included in combination i. Note that all the items are sorted such that
features[[i]] == sort(features[[i]]) is always true.

n_features Vector of positive integers. n_features[i] equals the number of features in combina-
tion i, i.e. n_features[i] = length(features[[i]])..

N Positive integer. The number of unique ways to sample n_features[i] features from m different
features, without replacement.

Author(s)

Nikolai Sellereite, Martin Jullum

Examples

All combinations
x <- feature_combinations(m = 3)
nrow(x) # Equals 2^3 = 8

Subsample of combinations
x <- feature_combinations(exact = FALSE, m = 10, n_combinations = 1e2)

finalize_explanation Computes the Shapley values given v(S)

Description

Computes dependence-aware Shapley values for observations in x_explain from the specified
model by using the method specified in approach to estimate the conditional expectation.

Usage

finalize_explanation(vS_list, internal)

finalize_explanation 23

Arguments

vS_list List Output from compute_vS()

internal List. Holds all parameters, data, functions and computed objects used within
explain() The list contains one or more of the elements parameters, data,
objects, output.

Details

The most important thing to notice is that shapr has implemented eight different Monte Carlo-
based approaches for estimating the conditional distributions of the data, namely "empirical",
"gaussian", "copula", "ctree", "vaeac", "categorical", "timeseries", and "independence".
shapr has also implemented two regression-based approaches "regression_separate" and "regression_surrogate",
and see the separate vignette on the regression-based approaches for more information. In addition,
the user also has the option of combining the different Monte Carlo-based approaches. E.g., if
you’re in a situation where you have trained a model that consists of 10 features, and you’d like
to use the "gaussian" approach when you condition on a single feature, the "empirical" ap-
proach if you condition on 2-5 features, and "copula" version if you condition on more than 5
features this can be done by simply passing approach = c("gaussian", rep("empirical", 4),
rep("copula", 4)). If "approach[i]" = "gaussian" means that you’d like to use the "gaussian"
approach when conditioning on i features. Conditioning on all features needs no approach as that
is given by the complete prediction itself, and should thus not be part of the vector.

For approach="ctree", n_samples corresponds to the number of samples from the leaf node (see
an exception related to the sample argument). For approach="empirical", n_samples is the K
parameter in equations (14-15) of Aas et al. (2021), i.e. the maximum number of observations (with
largest weights) that is used, see also the empirical.eta argument.

Value

Object of class c("shapr", "list"). Contains the following items:

shapley_values data.table with the estimated Shapley values

internal List with the different parameters, data and functions used internally

pred_explain Numeric vector with the predictions for the explained observations

MSEv List with the values of the MSEv evaluation criterion for the approach.

shapley_values is a data.table where the number of rows equals the number of observations you’d
like to explain, and the number of columns equals m +1, where m equals the total number of features
in your model.

If shapley_values[i, j + 1] > 0 it indicates that the j-th feature increased the prediction for the
i-th observation. Likewise, if shapley_values[i, j + 1] < 0 it indicates that the j-th feature de-
creased the prediction for the i-th observation. The magnitude of the value is also important to no-
tice. E.g. if shapley_values[i, k + 1] and shapley_values[i, j + 1] are greater than 0, where
j != k, and shapley_values[i, k + 1] > shapley_values[i, j + 1] this indicates that feature j
and k both increased the value of the prediction, but that the effect of the k-th feature was larger
than the j-th feature.

The first column in dt, called none, is the prediction value not assigned to any of the features (ϕ0).
It’s equal for all observations and set by the user through the argument prediction_zero. The

24 finalize_explanation

difference between the prediction and none is distributed among the other features. In theory this
value should be the expected prediction without conditioning on any features. Typically we set this
value equal to the mean of the response variable in our training data, but other choices such as the
mean of the predictions in the training data are also reasonable.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

Aas, K., Jullum, M., & L<U+00F8>land, A. (2021). Explaining individual predictions when fea-
tures are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298,
103502.

Examples

Load example data
data("airquality")
airquality <- airquality[complete.cases(airquality),]
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

Split data into test- and training data
data_train <- head(airquality, -3)
data_explain <- tail(airquality, 3)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)

Explain predictions
p <- mean(data_train[, y_var])

Empirical approach
explain1 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "empirical",
prediction_zero = p,
n_samples = 1e2

)

Gaussian approach
explain2 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,

finalize_explanation 25

approach = "gaussian",
prediction_zero = p,
n_samples = 1e2

)

Gaussian copula approach
explain3 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "copula",
prediction_zero = p,
n_samples = 1e2

)

ctree approach
explain4 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "ctree",
prediction_zero = p,
n_samples = 1e2

)

Combined approach
approach <- c("gaussian", "gaussian", "empirical")
explain5 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = approach,
prediction_zero = p,
n_samples = 1e2

)

Print the Shapley values
print(explain1$shapley_values)

Plot the results
if (requireNamespace("ggplot2", quietly = TRUE)) {

plot(explain1)
plot(explain1, plot_type = "waterfall")

}

Group-wise explanations
group_list <- list(A = c("Temp", "Month"), B = c("Wind", "Solar.R"))

explain_groups <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
group = group_list,

26 get_cov_mat

approach = "empirical",
prediction_zero = p,
n_samples = 1e2

)
print(explain_groups$shapley_values)

Separate and surrogate regression approaches with linear regression models.
More complex regression models can be used, and we can use CV to
tune the hyperparameters of the regression models and preprocess
the data before sending it to the model. See the regression vignette
(Shapley value explanations using the regression paradigm) for more
details about the `regression_separate` and `regression_surrogate` approaches.
explain_separate_lm <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
prediction_zero = p,
approach = "regression_separate",
regression.model = parsnip::linear_reg()

)

explain_surrogate_lm <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
prediction_zero = p,
approach = "regression_surrogate",
regression.model = parsnip::linear_reg()

)

get_cov_mat get_cov_mat

Description

get_cov_mat

Usage

get_cov_mat(x_train, min_eigen_value = 1e-06)

Arguments

x_train Matrix or data.frame/data.table. Contains the data used to estimate the (condi-
tional) distributions for the features needed to properly estimate the conditional
expectations in the Shapley formula.

min_eigen_value

Numeric Specifies the smallest allowed eigen value before the covariance matrix
of x_train is assumed to not be positive definite, and Matrix::nearPD() is
used to find the nearest one.

get_data_forecast 27

get_data_forecast Set up data for explain_forecast

Description

Set up data for explain_forecast

Usage

get_data_forecast(
y,
xreg,
train_idx,
explain_idx,
explain_y_lags,
explain_xreg_lags,
horizon

)

Arguments

y A matrix or numeric vector containing the endogenous variables for the model.
One variable per column, one observation per row.

xreg A matrix containing exogenous regressors for the model. One variable per col-
umn, one observation per row. Should have nrow(data) + horizon rows.

train_idx The observations indices in data to use as training examples.

explain_idx The observations indices in data to explain.

explain_y_lags Numeric vector Indicates the number of lags of y to include in the explanation.
explain_xreg_lags

Numeric vector Indicates the number of lags of xreg to include in the explana-
tion.

horizon The forecast horizon to explain.

Value

A list containing

• The data.frames x_train and x_explain which holds the lagged data examples.

• A numeric, n_endo denoting how many columns are endogenous in x_train and x_explain.

• A list, group with groupings of each variable to explain per variable and not per variable and
lag.

28 get_supported_approaches

get_mu_vec get_mu_vec

Description

get_mu_vec

Usage

get_mu_vec(x_train)

Arguments

x_train Matrix or data.frame/data.table. Contains the data used to estimate the (condi-
tional) distributions for the features needed to properly estimate the conditional
expectations in the Shapley formula.

get_supported_approaches

Gets the implemented approaches

Description

Gets the implemented approaches

Usage

get_supported_approaches()

Value

Character vector. The names of the implemented approaches that can be passed to argument
approach in explain().

lag_data 29

lag_data Lag a matrix of variables a specific number of lags for each variables.

Description

Lag a matrix of variables a specific number of lags for each variables.

Usage

lag_data(x, lags)

Arguments

x The matrix of variables (one variable per column).

lags A numeric vector denoting how many lags each variable should have.

Value

A list with two items

• A matrix, lagged with the lagged data.

• A list, group, with groupings of the lagged data per variable.

plot.shapr Plot of the Shapley value explanations

Description

Plots the individual prediction explanations.

Usage

S3 method for class 'shapr'
plot(
x,
plot_type = "bar",
digits = 3,
index_x_explain = NULL,
top_k_features = NULL,
col = NULL,
bar_plot_phi0 = TRUE,
bar_plot_order = "largest_first",
scatter_features = NULL,
scatter_hist = TRUE,
...

)

30 plot.shapr

Arguments

x An shapr object. The output from explain().
plot_type Character. Specifies the type of plot to produce. "bar" (the default) gives a reg-

ular horizontal bar plot of the Shapley value magnitudes. "waterfall" gives a
waterfall plot indicating the changes in the prediction score due to each features
contribution (their Shapley values). "scatter" plots the feature values on the x-
axis and Shapley values on the y-axis, as well as (optionally) a background scat-
ter_hist showing the distribution of the feature data. "beeswarm" summarises
the distribution of the Shapley values along the x-axis for all the features. Each
point gives the shapley value of a given instance, where the points are colored
by the feature value of that instance.

digits Integer. Number of significant digits to use in the feature description. Applicable
for plot_type "bar" and "waterfall"

index_x_explain

Integer vector. Which of the test observations to plot. E.g. if you have ex-
plained 10 observations using explain(), you can generate a plot for the first 5
observations by setting index_x_explain = 1:5.

top_k_features Integer. How many features to include in the plot. E.g. if you have 15 features
in your model you can plot the 5 most important features, for each explana-
tion, by setting top_k_features = 1:5. Applicable for plot_type "bar" and
"waterfall"

col Character vector (length depends on plot type). The color codes (hex codes
or other names understood by ggplot2::ggplot()) for positive and negative
Shapley values, respectively. The default is col=NULL, plotting with the de-
fault colors respective to the plot type. For plot_type = "bar" and plot_type
= "waterfall", the default is c("#00BA38","#F8766D"). For plot_type =
"beeswarm", the default is c("#F8766D","yellow","#00BA38"). For plot_type
= "scatter", the default is "#619CFF".
If you want to alter the colors i the plot, the length of the col vector depends
on plot type. For plot_type = "bar" or plot_type = "waterfall", two colors
should be provided, first for positive and then for negative Shapley values. For
plot_type = "beeswarm", either two or three colors can be given. If two colors
are given, then the first color determines the color that points with high feature
values will have, and the second determines the color of points with low feature
values. If three colors are given, then the first colors high feature values, the
second colors mid-range feature values, and the third colors low feature values.
For instance, col = c("red", "yellow", "blue") will make high values red,
mid-range values yellow, and low values blue. For plot_type = "scatter", a
single color is to be given, which determines the color of the points on the scatter
plot.

bar_plot_phi0 Logical. Whether to include phi0 in the plot for plot_type = "bar".
bar_plot_order Character. Specifies what order to plot the features with respect to the magni-

tude of the shapley values with plot_type = "bar": "largest_first" (the de-
fault) plots the features ordered from largest to smallest absolute Shapley value.
"smallest_first" plots the features ordered from smallest to largest absolute
Shapley value. "original" plots the features in the original order of the data
table.

plot.shapr 31

scatter_features

Integer or character vector. Only used for plot_type = "scatter". Specifies
what features to include in (scatter) plot. Can be a numerical vector indicating
feature index, or a character vector, indicating the name(s) of the feature(s) to
plot.

scatter_hist Logical. Only used for plot_type = "scatter". Whether to include a scat-
ter_hist indicating the distribution of the data when making the scatter plot. Note
that the bins are scaled so that when all the bins are stacked they fit the span of
the y-axis of the plot.

... Currently not used.

Details

See the examples below, or vignette("understanding_shapr", package = "shapr") for an ex-
amples of how you should use the function.

Value

ggplot object with plots of the Shapley value explanations

Author(s)

Martin Jullum, Vilde Ung

Examples

data("airquality")
airquality <- airquality[complete.cases(airquality),]
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

Split data into test- and training data
data_train <- head(airquality, -50)
data_explain <- tail(airquality, 50)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)

Explain predictions
p <- mean(data_train[, y_var])

Empirical approach
x <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "empirical",

32 plot.shapr

prediction_zero = p,
n_samples = 1e2

)

if (requireNamespace("ggplot2", quietly = TRUE)) {
The default plotting option is a bar plot of the Shapley values
We draw bar plots for the first 4 observations
plot(x, index_x_explain = 1:4)

We can also make waterfall plots
plot(x, plot_type = "waterfall", index_x_explain = 1:4)
And only showing the 2 features with largest contribution
plot(x, plot_type = "waterfall", index_x_explain = 1:4, top_k_features = 2)

Or scatter plots showing the distribution of the shapley values and feature values
plot(x, plot_type = "scatter")
And only for a specific feature
plot(x, plot_type = "scatter", scatter_features = "Temp")

Or a beeswarm plot summarising the Shapley values and feature values for all features
plot(x, plot_type = "beeswarm")
plot(x, plot_type = "beeswarm", col = c("red", "black")) # we can change colors

}

Example of scatter and beeswarm plot with factor variables
airquality$Month_factor <- as.factor(month.abb[airquality$Month])
airquality <- airquality[complete.cases(airquality),]
x_var <- c("Solar.R", "Wind", "Temp", "Month_factor")
y_var <- "Ozone"

Split data into test- and training data
data_train <- airquality
data_explain <- tail(airquality, 50)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)

Explain predictions
p <- mean(data_train[, y_var])

Empirical approach
x <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "ctree",
prediction_zero = p,
n_samples = 1e2

)

plot_MSEv_eval_crit 33

if (requireNamespace("ggplot2", quietly = TRUE)) {
plot(x, plot_type = "scatter")
plot(x, plot_type = "beeswarm")

}

plot_MSEv_eval_crit Plots of the MSEv Evaluation Criterion

Description

Make plots to visualize and compare the MSEv evaluation criterion for a list of explain() objects
applied to the same data and model. The function creates bar plots and line plots with points to
illustrate the overall MSEv evaluation criterion, but also for each observation/explicand and combi-
nation by only averaging over the combinations and observations/explicands, respectively.

Usage

plot_MSEv_eval_crit(
explanation_list,
index_x_explain = NULL,
id_combination = NULL,
CI_level = if (length(explanation_list[[1]]$pred_explain) < 20) NULL else 0.95,
geom_col_width = 0.9,
plot_type = "overall"

)

Arguments

explanation_list

A list of explain() objects applied to the same data and model. If the entries
in the list are named, then the function use these names. Otherwise, they default
to the approach names (with integer suffix for duplicates) for the explanation
objects in explanation_list.

index_x_explain

Integer vector. Which of the test observations to plot. E.g. if you have ex-
plained 10 observations using explain(), you can generate a plot for the first 5
observations by setting index_x_explain = 1:5.

id_combination Integer vector. Which of the combinations (coalitions) to plot. E.g. if you
used n_combinations = 16 in explain(), you can generate a plot for the first
5 combinations and the 10th by setting id_combination = c(1:5, 10).

CI_level Positive numeric between zero and one. Default is 0.95 if the number of obser-
vations to explain is larger than 20, otherwise CI_level = NULL, which removes
the confidence intervals. The level of the approximate confidence intervals for
the overall MSEv and the MSEv_combination. The confidence intervals are
based on that the MSEv scores are means over the observations/explicands, and

34 plot_MSEv_eval_crit

that means are approximation normal. Since the standard deviations are esti-
mated, we use the quantile t from the T distribution with N_explicands - 1 de-
grees of freedom corresponding to the provided level. Here, N_explicands is the
number of observations/explicands. MSEv ± tSD(MSEv)/sqrt(N_explicands).
Note that the explain() function already scales the standard deviation by sqrt(N_explicands),
thus, the CI are MSEv ± tMSEv_sd, where the values MSEv and MSEv_sd are
extracted from the MSEv data.tables in the objects in the explanation_list.

geom_col_width Numeric. Bar width. By default, set to 90% of the ggplot2::resolution() of
the data.

plot_type Character vector. The possible options are "overall" (default), "comb", and "ex-
plicand". If plot_type = "overall", then the plot (one bar plot) associated
with the overall MSEv evaluation criterion for each method is created, i.e., when
averaging over both the combinations/coalitions and observations/explicands. If
plot_type = "comb", then the plots (one line plot and one bar plot) associated
with the MSEv evaluation criterion for each combination/coalition are created,
i.e., when we only average over the observations/explicands. If plot_type =
"explicand", then the plots (one line plot and one bar plot) associated with
the MSEv evaluation criterion for each observations/explicands are created, i.e.,
when we only average over the combinations/coalitions. If plot_type is a vec-
tor of one or several of "overall", "comb", and "explicand", then the associated
plots are created.

Value

Either a single ggplot2::ggplot() object of the MSEv criterion when plot_type = "overall",
or a list of ggplot2::ggplot() objects based on the plot_type parameter.

Author(s)

Lars Henry Berge Olsen

Examples

Load necessary librarieslibrary(xgboost)
library(data.table)
library(shapr)
library(ggplot2)

Get the data
data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

#' Define the features and the response
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

Split data into test and training data set
ind_x_explain <- 1:25
x_train <- data[-ind_x_explain, ..x_var]

plot_MSEv_eval_crit 35

y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost::xgboost(

data = as.matrix(x_train),
label = y_train,
nround = 20,
verbose = FALSE

)

Specifying the phi_0, i.e. the expected prediction without any features
prediction_zero <- mean(y_train)

Independence approach
explanation_independence <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "independence",
prediction_zero = prediction_zero,
n_samples = 1e2

)

Gaussian 1e1 approach
explanation_gaussian_1e1 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
prediction_zero = prediction_zero,
n_samples = 1e1

)

Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
prediction_zero = prediction_zero,
n_samples = 1e2

)

ctree approach
explanation_ctree <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "ctree",
prediction_zero = prediction_zero,
n_samples = 1e2

)

36 plot_MSEv_eval_crit

Combined approach
explanation_combined <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = c("gaussian", "independence", "ctree"),
prediction_zero = prediction_zero,
n_samples = 1e2

)

Create a list of explanations with names
explanation_list_named <- list(

"Ind." = explanation_independence,
"Gaus. 1e1" = explanation_gaussian_1e1,
"Gaus. 1e2" = explanation_gaussian_1e2,
"Ctree" = explanation_ctree,
"Combined" = explanation_combined

)

if (requireNamespace("ggplot2", quietly = TRUE)) {
Create the default MSEv plot where we average over both the combinations and observations
with approximate 95% confidence intervals
plot_MSEv_eval_crit(explanation_list_named, CI_level = 0.95, plot_type = "overall")

Can also create plots of the MSEv criterion averaged only over the combinations or observations.
MSEv_figures <- plot_MSEv_eval_crit(explanation_list_named,
CI_level = 0.95,
plot_type = c("overall", "comb", "explicand")

)
MSEv_figures$MSEv_bar
MSEv_figures$MSEv_combination_bar
MSEv_figures$MSEv_explicand_bar

When there are many combinations or observations, then it can be easier to look at line plots
MSEv_figures$MSEv_combination_line_point
MSEv_figures$MSEv_explicand_line_point

We can specify which observations or combinations to plot
plot_MSEv_eval_crit(explanation_list_named,

plot_type = "explicand",
index_x_explain = c(1, 3:4, 6),
CI_level = 0.95

)$MSEv_explicand_bar
plot_MSEv_eval_crit(explanation_list_named,

plot_type = "comb",
id_combination = c(3, 4, 9, 13:15),
CI_level = 0.95

)$MSEv_combination_bar

We can alter the figures if other palette schemes or design is wanted
bar_text_n_decimals <- 1
MSEv_figures$MSEv_bar +

plot_SV_several_approaches 37

ggplot2::scale_x_discrete(limits = rev(levels(MSEv_figures$MSEv_bar$data$Method))) +
ggplot2::coord_flip() +
ggplot2::scale_fill_discrete() + #' Default ggplot2 palette
ggplot2::theme_minimal() + #' This must be set before the other theme call
ggplot2::theme(

plot.title = ggplot2::element_text(size = 10),
legend.position = "bottom"

) +
ggplot2::guides(fill = ggplot2::guide_legend(nrow = 1, ncol = 6)) +
ggplot2::geom_text(

ggplot2::aes(label = sprintf(
paste("%.", sprintf("%d", bar_text_n_decimals), "f", sep = ""),
round(MSEv, bar_text_n_decimals)

)),
vjust = -1.1, # This value must be altered based on the plot dimension
hjust = 1.1, # This value must be altered based on the plot dimension
color = "black",
position = ggplot2::position_dodge(0.9),
size = 5

)
}

plot_SV_several_approaches

Shapley value bar plots for several explanation objects

Description

Make plots to visualize and compare the estimated Shapley values for a list of explain() objects
applied to the same data and model.

Usage

plot_SV_several_approaches(
explanation_list,
index_explicands = NULL,
only_these_features = NULL,
plot_phi0 = FALSE,
digits = 4,
add_zero_line = FALSE,
axis_labels_n_dodge = NULL,
axis_labels_rotate_angle = NULL,
horizontal_bars = TRUE,
facet_scales = "free",
facet_ncol = 2,
geom_col_width = 0.85,
brewer_palette = NULL

)

38 plot_SV_several_approaches

Arguments

explanation_list

A list of explain() objects applied to the same data and model. If the entries in
the list is named, then the function use these names. Otherwise, it defaults to the
approach names (with integer suffix for duplicates) for the explanation objects
in explanation_list.

index_explicands

Integer vector. Which of the explicands (test observations) to plot. E.g. if you
have explained 10 observations using explain(), you can generate a plot for
the first 5 observations/explicands and the 10th by setting index_x_explain =
c(1:5, 10).

only_these_features

String vector. Containing the names of the features which are to be included in
the bar plots.

plot_phi0 Boolean. If we are to include the ϕ0 in the bar plots or not.

digits Integer. Number of significant digits to use in the feature description.

add_zero_line Boolean. If we are to add a black line for a feature contribution of 0.
axis_labels_n_dodge

Integer. The number of rows that should be used to render the labels. This is
useful for displaying labels that would otherwise overlap.

axis_labels_rotate_angle

Numeric. The angle of the axis label, where 0 means horizontal, 45 means tilted,
and 90 means vertical. Compared to setting the angle inggplot2::theme()
/ ggplot2::element_text(), this also uses some heuristics to automatically
pick the hjust and vjust that you probably want.

horizontal_bars

Boolean. Flip Cartesian coordinates so that horizontal becomes vertical, and
vertical, horizontal. This is primarily useful for converting geoms and statistics
which display y conditional on x, to x conditional on y. See ggplot2::coord_flip().

facet_scales Should scales be free ("free", the default), fixed ("fixed"), or free in one di-
mension ("free_x", "free_y")? The user has to change the latter manually
depending on the value of horizontal_bars.

facet_ncol Integer. The number of columns in the facet grid. Default is facet_ncol = 2.

geom_col_width Numeric. Bar width. By default, set to 85% of the ggplot2::resolution() of
the data.

brewer_palette String. Name of one of the color palettes from RColorBrewer::RColorBrewer().
If NULL, then the function uses the default ggplot2::ggplot() color scheme.
The following palettes are available for use with these scales:

Diverging BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, Spec-
tral

Qualitative Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3
Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu,

PuBuGn, PuRd, Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd

plot_SV_several_approaches 39

Value

A ggplot2::ggplot() object.

Author(s)

Lars Henry Berge Olsen

Examples

Load necessary libraries
library(xgboost)
library(data.table)

Get the data
data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

Define the features and the response
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

Split data into test and training data set
ind_x_explain <- 1:12
x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost::xgboost(

data = as.matrix(x_train),
label = y_train,
nround = 20,
verbose = FALSE

)

Specifying the phi_0, i.e. the expected prediction without any features
prediction_zero <- mean(y_train)

Independence approach
explanation_independence <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "independence",
prediction_zero = prediction_zero,
n_samples = 1e2

)

Empirical approach
explanation_empirical <- explain(

model = model,

40 plot_SV_several_approaches

x_explain = x_explain,
x_train = x_train,
approach = "empirical",
prediction_zero = prediction_zero,
n_samples = 1e2

)

Gaussian 1e1 approach
explanation_gaussian_1e1 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
prediction_zero = prediction_zero,
n_samples = 1e1

)

Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
prediction_zero = prediction_zero,
n_samples = 1e2

)

Combined approach
explanation_combined <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = c("gaussian", "ctree", "empirical"),
prediction_zero = prediction_zero,
n_samples = 1e2

)

Create a list of explanations with names
explanation_list <- list(

"Ind." = explanation_independence,
"Emp." = explanation_empirical,
"Gaus. 1e1" = explanation_gaussian_1e1,
"Gaus. 1e2" = explanation_gaussian_1e2,
"Combined" = explanation_combined

)

if (requireNamespace("ggplot2", quietly = TRUE)) {
The function uses the provided names.
plot_SV_several_approaches(explanation_list)

We can change the number of columns in the grid of plots and add other visual alterations
plot_SV_several_approaches(explanation_list,

facet_ncol = 3,

process_factor_data 41

facet_scales = "free_y",
add_zero_line = TRUE,
digits = 2,
brewer_palette = "Paired",
geom_col_width = 0.6

) +
ggplot2::theme_minimal() +

ggplot2::theme(legend.position = "bottom", plot.title = ggplot2::element_text(size = 0))

We can specify which explicands to plot to get less chaotic plots and make the bars vertical
plot_SV_several_approaches(explanation_list,

index_explicands = c(1:2, 5, 10),
horizontal_bars = FALSE,
axis_labels_rotate_angle = 45

)

We can change the order of the features by specifying the
order using the `only_these_features` parameter.
plot_SV_several_approaches(explanation_list,

index_explicands = c(1:2, 5, 10),
only_these_features = c("Temp", "Solar.R", "Month", "Wind")

)

We can also remove certain features if we are not interested in them
or want to focus on, e.g., two features. The function will give a
message to if the user specifies non-valid feature names.
plot_SV_several_approaches(explanation_list,

index_explicands = c(1:2, 5, 10),
only_these_features = c("Temp", "Solar.R"),
plot_phi0 = TRUE

)
}

process_factor_data Treat factors as numeric values

Description

Factors are given a numeric value above the highest numeric value in the data. The value of the
different levels are sorted by factor and then level.

Usage

process_factor_data(dt, factor_cols)

Arguments

dt data.table to plot
factor_cols Columns that are factors or character

42 release_questions

Value

A list of a lookup table with each factor and level and its numeric value, a data.table very similar to
the input data, but now with numeric values for factors, and the maximum feature value.

reg_forecast_setup Set up exogenous regressors for explanation in a forecast model.

Description

Set up exogenous regressors for explanation in a forecast model.

Usage

reg_forecast_setup(x, horizon, group)

Arguments

x A matrix with the exogenous variables.

horizon The forecast horizon.

group The list of endogenous groups, to append exogenous groups to.

Value

A list containing

• fcast A matrix containing the exogenous observations needed for each observation.

• group The list group with the exogenous groups appended.

release_questions Auxiliary function for the vaeac vignette

Description

Function that question if the main and vaeac vignette has been built using the rebuild-long-running-vignette.R
function. This is only useful when using devtools to release shapr to cran. See devtools::release()
for more information.

Usage

release_questions()

setup 43

setup check_setup

Description

check_setup

Usage

setup(
x_train,
x_explain,
approach,
prediction_zero,
output_size = 1,
n_combinations,
group,
n_samples,
n_batches,
seed,
keep_samp_for_vS,
feature_specs,
MSEv_uniform_comb_weights = TRUE,
type = "normal",
horizon = NULL,
y = NULL,
xreg = NULL,
train_idx = NULL,
explain_idx = NULL,
explain_y_lags = NULL,
explain_xreg_lags = NULL,
group_lags = NULL,
timing,
verbose,
is_python = FALSE,
...

)

Arguments

x_train Matrix or data.frame/data.table. Contains the data used to estimate the (condi-
tional) distributions for the features needed to properly estimate the conditional
expectations in the Shapley formula.

x_explain A matrix or data.frame/data.table. Contains the the features, whose predictions
ought to be explained.

44 setup

approach Character vector of length 1 or one less than the number of features. All ele-
ments should, either be "gaussian", "copula", "empirical", "ctree", "vaeac",
"categorical", "timeseries", "independence", "regression_separate",
or "regression_surrogate". The two regression approaches can not be com-
bined with any other approach. See details for more information.

prediction_zero

Numeric. The prediction value for unseen data, i.e. an estimate of the expected
prediction without conditioning on any features. Typically we set this value
equal to the mean of the response variable in our training data, but other choices
such as the mean of the predictions in the training data are also reasonable.

output_size TODO: Document

n_combinations Integer. If group = NULL, n_combinations represents the number of unique fea-
ture combinations to sample. If group != NULL, n_combinations represents the
number of unique group combinations to sample. If n_combinations = NULL,
the exact method is used and all combinations are considered. The maximum
number of combinations equals 2^m, where m is the number of features.

group List. If NULL regular feature wise Shapley values are computed. If provided,
group wise Shapley values are computed. group then has length equal to the
number of groups. The list element contains character vectors with the features
included in each of the different groups.

n_samples Positive integer. Indicating the maximum number of samples to use in the Monte
Carlo integration for every conditional expectation. See also details.

n_batches Positive integer (or NULL). Specifies how many batches the total number of fea-
ture combinations should be split into when calculating the contribution function
for each test observation. The default value is NULL which uses a reasonable
trade-off between RAM allocation and computation speed, which depends on
approach and n_combinations. For models with many features, increasing
the number of batches reduces the RAM allocation significantly. This typically
comes with a small increase in computation time.

seed Positive integer. Specifies the seed before any randomness based code is being
run. If NULL the seed will be inherited from the calling environment.

keep_samp_for_vS

Logical. Indicates whether the samples used in the Monte Carlo estimation of
v_S should be returned (in internal$output)

feature_specs List. The output from get_model_specs() or get_data_specs(). Contains
the 3 elements:

labels Character vector with the names of each feature.
classes Character vector with the classes of each features.
factor_levels Character vector with the levels for any categorical features.

MSEv_uniform_comb_weights

Logical. If TRUE (default), then the function weights the combinations uniformly
when computing the MSEv criterion. If FALSE, then the function use the Shapley
kernel weights to weight the combinations when computing the MSEv criterion.
Note that the Shapley kernel weights are replaced by the sampling frequency
when not all combinations are considered.

setup_approach 45

type Character. Either "normal" or "forecast" corresponding to function setup() is
called from, correspondingly the type of explanation that should be generated.

horizon Numeric. The forecast horizon to explain. Passed to the predict_model func-
tion.

y Matrix, data.frame/data.table or a numeric vector. Contains the endogenous
variables used to estimate the (conditional) distributions needed to properly es-
timate the conditional expectations in the Shapley formula including the obser-
vations to be explained.

xreg Matrix, data.frame/data.table or a numeric vector. Contains the exogenous vari-
ables used to estimate the (conditional) distributions needed to properly estimate
the conditional expectations in the Shapley formula including the observations
to be explained. As exogenous variables are used contemporaneusly when pro-
ducing a forecast, this item should contain nrow(y) + horizon rows.

train_idx Numeric vector The row indices in data and reg denoting points in time to use
when estimating the conditional expectations in the Shapley value formula. If
train_idx = NULL (default) all indices not selected to be explained will be used.

explain_idx Numeric vector The row indices in data and reg denoting points in time to ex-
plain.

explain_y_lags Numeric vector. Denotes the number of lags that should be used for each vari-
able in y when making a forecast.

explain_xreg_lags

Numeric vector. If xreg != NULL, denotes the number of lags that should be
used for each variable in xreg when making a forecast.

group_lags Logical. If TRUE all lags of each variable are grouped together and explained as
a group. If FALSE all lags of each variable are explained individually.

timing Logical. Whether the timing of the different parts of the explain() should
saved in the model object.

verbose An integer specifying the level of verbosity. If 0, shapr will stay silent. If 1,
it will print information about performance. If 2, some additional information
will be printed out. Use 0 (default) for no verbosity, 1 for low verbose, and 2 for
high verbose. TODO: Make this clearer when we end up fixing this and if they
should force a progressr bar.

is_python Logical. Indicates whether the function is called from the Python wrapper. De-
fault is FALSE which is never changed when calling the function via explain()
in R. The parameter is later used to disallow running the AICc-versions of the
empirical as that requires data based optimization.

... Further arguments passed to specific approaches

setup_approach Set up the framework chosen approach

Description

The different choices of approach takes different (optional) parameters, which are forwarded from
explain().

46 setup_approach

Usage

setup_approach(internal, ...)

S3 method for class 'categorical'
setup_approach(
internal,
categorical.joint_prob_dt = NULL,
categorical.epsilon = 0.001,
...

)

S3 method for class 'copula'
setup_approach(internal, ...)

S3 method for class 'ctree'
setup_approach(
internal,
ctree.mincriterion = 0.95,
ctree.minsplit = 20,
ctree.minbucket = 7,
ctree.sample = TRUE,
...

)

S3 method for class 'empirical'
setup_approach(
internal,
empirical.type = "fixed_sigma",
empirical.eta = 0.95,
empirical.fixed_sigma = 0.1,
empirical.n_samples_aicc = 1000,
empirical.eval_max_aicc = 20,
empirical.start_aicc = 0.1,
empirical.cov_mat = NULL,
model = NULL,
predict_model = NULL,
...

)

S3 method for class 'gaussian'
setup_approach(internal, gaussian.mu = NULL, gaussian.cov_mat = NULL, ...)

S3 method for class 'independence'
setup_approach(internal, ...)

S3 method for class 'regression_separate'
setup_approach(
internal,

setup_approach 47

regression.model = parsnip::linear_reg(),
regression.tune_values = NULL,
regression.vfold_cv_para = NULL,
regression.recipe_func = NULL,
...

)

S3 method for class 'regression_surrogate'
setup_approach(
internal,
regression.model = parsnip::linear_reg(),
regression.tune_values = NULL,
regression.vfold_cv_para = NULL,
regression.recipe_func = NULL,
regression.surrogate_n_comb = internal$parameters$used_n_combinations - 2,
...

)

S3 method for class 'timeseries'
setup_approach(
internal,
timeseries.fixed_sigma_vec = 2,
timeseries.bounds = c(NULL, NULL),
...

)

S3 method for class 'vaeac'
setup_approach(
internal,
vaeac.depth = 3,
vaeac.width = 32,
vaeac.latent_dim = 8,
vaeac.activation_function = torch::nn_relu,
vaeac.lr = 0.001,
vaeac.n_vaeacs_initialize = 4,
vaeac.epochs = 100,
vaeac.extra_parameters = list(),
...

)

Arguments

internal Not used.

... approach-specific arguments. See below.
categorical.joint_prob_dt

Data.table. (Optional) Containing the joint probability distribution for each
combination of feature values. NULL means it is estimated from the x_train
and x_explain.

48 setup_approach

categorical.epsilon

Numeric value. (Optional) If joint_probability_dt is not supplied, probabil-
ities/frequencies are estimated using x_train. If certain observations occur in
x_train and NOT in x_explain, then epsilon is used as the proportion of times
that these observations occurs in the training data. In theory, this proportion
should be zero, but this causes an error later in the Shapley computation.

ctree.mincriterion

Numeric scalar or vector. (default = 0.95) Either a scalar or vector of length
equal to the number of features in the model. Value is equal to 1 - α where α
is the nominal level of the conditional independence tests. If it is a vector, this
indicates which value to use when conditioning on various numbers of features.

ctree.minsplit Numeric scalar. (default = 20) Determines minimum value that the sum of the
left and right daughter nodes required for a split.

ctree.minbucket

Numeric scalar. (default = 7) Determines the minimum sum of weights in a
terminal node required for a split

ctree.sample Boolean. (default = TRUE) If TRUE, then the method always samples n_samples
observations from the leaf nodes (with replacement). If FALSE and the number
of observations in the leaf node is less than n_samples, the method will take
all observations in the leaf. If FALSE and the number of observations in the
leaf node is more than n_samples, the method will sample n_samples observa-
tions (with replacement). This means that there will always be sampling in the
leaf unless sample = FALSE AND the number of obs in the node is less than
n_samples.

empirical.type Character. (default = "fixed_sigma") Should be equal to either "independence","fixed_sigma",
"AICc_each_k" "AICc_full". TODO: Describe better what the methods do
here.

empirical.eta Numeric. (default = 0.95) Needs to be 0 < eta <= 1. Represents the minimum
proportion of the total empirical weight that data samples should use. If e.g. eta
= .8 we will choose the K samples with the largest weight so that the sum of the
weights accounts for 80\ eta is the η parameter in equation (15) of Aas et al
(2021).

empirical.fixed_sigma

Positive numeric scalar. (default = 0.1) Represents the kernel bandwidth in
the distance computation used when conditioning on all different combinations.
Only used when empirical.type = "fixed_sigma"

empirical.n_samples_aicc

Positive integer. (default = 1000) Number of samples to consider in AICc opti-
mization. Only used for empirical.type is either "AICc_each_k" or "AICc_full".

empirical.eval_max_aicc

Positive integer. (default = 20) Maximum number of iterations when optimiz-
ing the AICc. Only used for empirical.type is either "AICc_each_k" or
"AICc_full".

empirical.start_aicc

Numeric. (default = 0.1) Start value of the sigma parameter when optimiz-
ing the AICc. Only used for empirical.type is either "AICc_each_k" or
"AICc_full".

setup_approach 49

empirical.cov_mat

Numeric matrix. (Optional, default = NULL) Containing the covariance matrix
of the data generating distribution used to define the Mahalanobis distance. NULL
means it is estimated from x_train.

model Objects. The model object that ought to be explained. See the documentation of
explain() for details.

predict_model Function. The prediction function used when model is not natively supported.
See the documentation of explain() for details.

gaussian.mu Numeric vector. (Optional) Containing the mean of the data generating distri-
bution. NULL means it is estimated from the x_train.

gaussian.cov_mat

Numeric matrix. (Optional) Containing the covariance matrix of the data gener-
ating distribution. NULL means it is estimated from the x_train.

regression.model

A tidymodels object of class model_specs. Default is a linear regression
model, i.e., parsnip::linear_reg(). See tidymodels for all possible mod-
els, and see the vignette for how to add new/own models. Note, to make it easier
to call explain() from Python, the regression.model parameter can also be
a string specifying the model which will be parsed and evaluated. For example,
"parsnip::rand_forest(mtry = hardhat::tune(), trees = 100, engine = "ranger", mode = "regression")"
is also a valid input. It is essential to include the package prefix if the package
is not loaded.

regression.tune_values

Either NULL (default), a data.frame/data.table/tibble, or a function. The data.frame
must contain the possible hyperparameter value combinations to try. The col-
umn names must match the names of the tuneable parameters specified in regression.model.
If regression.tune_values is a function, then it should take one argument x
which is the training data for the current combination/coalition and returns a
data.frame/data.table/tibble with the properties described above. Using a func-
tion allows the hyperparameter values to change based on the size of the combi-
nation. See the regression vignette for several examples. Note, to make it easier
to call explain() from Python, the regression.tune_values can also be a
string containing an R function. For example, "function(x) return(dials::grid_regular(dials::mtry(c(1,
ncol(x)))), levels = 3))" is also a valid input. It is essential to include the
package prefix if the package is not loaded.

regression.vfold_cv_para

Either NULL (default) or a named list containing the parameters to be sent to
rsample::vfold_cv(). See the regression vignette for several examples.

regression.recipe_func

Either NULL (default) or a function that that takes in a recipes::recipe()
object and returns a modified recipes::recipe() with potentially additional
recipe steps. See the regression vignette for several examples. Note, to make
it easier to call explain() from Python, the regression.recipe_func can
also be a string containing an R function. For example, "function(recipe)
return(recipes::step_ns(recipe, recipes::all_numeric_predictors(),
deg_free = 2))" is also a valid input. It is essential to include the package pre-
fix if the package is not loaded.

https://www.tidymodels.org/find/parsnip/

50 setup_approach

regression.surrogate_n_comb

Integer (default is internal$parameters$used_n_combinations) specifying
the number of unique combinations/coalitions to apply to each training observa-
tion. Maximum allowed value is "internal$parameters$used_n_combinations
- 2". By default, we use all coalitions, but this can take a lot of memory
in larger dimensions. Note that by "all", we mean all coalitions chosen by
shapr to be used. This will be all 2nfeatures coalitions (minus empty and grand
coalition) if shapr is in the exact mode. If the user sets a lower value than
internal$parameters$used_n_combinations, then we sample this amount
of unique coalitions separately for each training observations. That is, on aver-
age, all coalitions should be equally trained.

timeseries.fixed_sigma_vec

Numeric. (Default = 2) Represents the kernel bandwidth in the distance compu-
tation. TODO: What length should it have? 1?

timeseries.bounds

Numeric vector of length two. (Default = c(NULL, NULL)) If one or both of
these bounds are not NULL, we restrict the sampled time series to be between
these bounds. This is useful if the underlying time series are scaled between 0
and 1, for example.

vaeac.depth Positive integer (default is 3). The number of hidden layers in the neural net-
works of the masked encoder, full encoder, and decoder.

vaeac.width Positive integer (default is 32). The number of neurons in each hidden layer in
the neural networks of the masked encoder, full encoder, and decoder.

vaeac.latent_dim

Positive integer (default is 8). The number of dimensions in the latent space.
vaeac.activation_function

An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu()
(default), torch::nn_leaky_relu(), torch::nn_selu(), or torch::nn_sigmoid().

vaeac.lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam()
optimizer.

vaeac.n_vaeacs_initialize

Positive integer (default is 4). The number of different vaeac models to initiate in
the start. Pick the best performing one after vaeac.extra_parameters$epochs_initiation_phase
epochs (default is 2) and continue training that one.

vaeac.epochs Positive integer (default is 100). The number of epochs to train the final vaeac
model. This includes vaeac.extra_parameters$epochs_initiation_phase,
where the default is 2.

vaeac.extra_parameters

Named list with extra parameters to the vaeac approach. See vaeac_get_extra_para_default()
for description of possible additional parameters and their default values.

Author(s)

Martin Jullum

Lars Henry Berge Olsen

setup_computation 51

setup_computation Sets up everything for the Shapley values computation in explain()

Description

Sets up everything for the Shapley values computation in explain()

Usage

setup_computation(internal, model, predict_model)

Arguments

internal List. Holds all parameters, data, functions and computed objects used within
explain() The list contains one or more of the elements parameters, data,
objects, output.

model Objects. The model object that ought to be explained. See the documentation of
explain() for details.

predict_model Function. The prediction function used when model is not natively supported.
See the documentation of explain() for details.

Value

List internal It holds all parameters, data, and computed objects used within explain(). The list
contains one or more of the elements parameters, data, objects, output.

vaeac_get_data_objects

Function to set up data loaders and save file names

Description

Function to set up data loaders and save file names

Usage

vaeac_get_data_objects(
x_train,
log_exp_cont_feat,
val_ratio,
batch_size,
paired_sampling,
model_description,
depth,
width,

52 vaeac_get_data_objects

latent_dim,
lr,
epochs,
save_every_nth_epoch,
folder_to_save_model,
train_indices = NULL,
val_indices = NULL

)

Arguments

x_train A data.table containing the training data. Categorical data must have class
names 1, 2, . . . ,K.

log_exp_cont_feat

Logical (default is FALSE). If we are to log transform all continuous features be-
fore sending the data to vaeac(). The vaeac model creates unbounded Monte
Carlo sample values. Thus, if the continuous features are strictly positive (as
for, e.g., the Burr distribution and Abalone data set), it can be advantageous
to log transform the data to unbounded form before using vaeac. If TRUE,
then vaeac_postprocess_data() will take the exp of the results to get back
to strictly positive values when using the vaeac model to impute missing val-
ues/generate the Monte Carlo samples.

val_ratio Numeric (default is 0.25). Scalar between 0 and 1 indicating the ratio of in-
stances from the input data which will be used as validation data. That is,
val_ratio = 0.25 means that 75% of the provided data is used as training data,
while the remaining 25% is used as validation data.

batch_size Positive integer (default is 64). The number of samples to include in each batch
during the training of the vaeac model. Used in torch::dataloader().

paired_sampling

Logical (default is TRUE). If TRUE, we apply paired sampling to the training
batches. That is, the training observations in each batch will be duplicated,
where the first instance will be masked by S while the second instance will be
masked by S̄. This ensures that the training of the vaeac model becomes more
stable as the model has access to the full version of each training observation.
However, this will increase the training time due to more complex implemen-
tation and doubling the size of each batch. See paired_sampler() for more
information.

model_description

String (default is make.names(Sys.time())). String containing, e.g., the name
of the data distribution or additional parameter information. Used in the save
name of the fitted model. If not provided, then a name will be generated based
on base::Sys.time() to ensure a unique name. We use base::make.names()
to ensure a valid file name for all operating systems.

depth Positive integer (default is 3). The number of hidden layers in the neural net-
works of the masked encoder, full encoder, and decoder.

width Positive integer (default is 32). The number of neurons in each hidden layer in
the neural networks of the masked encoder, full encoder, and decoder.

vaeac_get_evaluation_criteria 53

latent_dim Positive integer (default is 8). The number of dimensions in the latent space.

lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam()
optimizer.

epochs Positive integer (default is 100). The number of epochs to train the final vaeac
model. This includes epochs_initiation_phase, where the default is 2.

save_every_nth_epoch

Positive integer (default is NULL). If provided, then the vaeac model after every
save_every_nth_epochth epoch will be saved.

folder_to_save_model

String (default is base::tempdir()). String specifying a path to a folder where
the function is to save the fitted vaeac model. Note that the path will be removed
from the returned explain() object if vaeac.save_model = FALSE.

train_indices Numeric array (optional) containing the indices of the training observations.
There are conducted no checks to validdate the indices.

val_indices Numeric array (optional) containing the indices of the validation observations.
#’ There are conducted no checks to validdate the indices.

Value

List of objects needed to train the vaeac model

vaeac_get_evaluation_criteria

Extract the Training VLB and Validation IWAE from a list of explana-
tions objects using the vaeac approach

Description

Extract the Training VLB and Validation IWAE from a list of explanations objects using the vaeac
approach

Usage

vaeac_get_evaluation_criteria(explanation_list)

Arguments

explanation_list

A list of explain() objects applied to the same data, model, and vaeac must
be the used approach. If the entries in the list is named, then the function use
these names. Otherwise, it defaults to the approach names (with integer suffix
for duplicates) for the explanation objects in explanation_list.

Value

A data.table containing the training VLB, validation IWAE, and running validation IWAE at each
epoch for each vaeac model.

54 vaeac_get_extra_para_default

Author(s)

Lars Henry Berge Olsen

vaeac_get_extra_para_default

Function to specify the extra parameters in the vaeac model

Description

In this function, we specify the default values for the extra parameters used in explain() for
approach = "vaeac".

Usage

vaeac_get_extra_para_default(
vaeac.model_description = make.names(Sys.time()),
vaeac.folder_to_save_model = tempdir(),
vaeac.pretrained_vaeac_model = NULL,
vaeac.cuda = FALSE,
vaeac.epochs_initiation_phase = 2,
vaeac.epochs_early_stopping = NULL,
vaeac.save_every_nth_epoch = NULL,
vaeac.val_ratio = 0.25,
vaeac.val_iwae_n_samples = 25,
vaeac.batch_size = 64,
vaeac.batch_size_sampling = NULL,
vaeac.running_avg_n_values = 5,
vaeac.skip_conn_layer = TRUE,
vaeac.skip_conn_masked_enc_dec = TRUE,
vaeac.batch_normalization = FALSE,
vaeac.paired_sampling = TRUE,
vaeac.masking_ratio = 0.5,
vaeac.mask_gen_coalitions = NULL,
vaeac.mask_gen_coalitions_prob = NULL,
vaeac.sigma_mu = 10000,
vaeac.sigma_sigma = 1e-04,
vaeac.sample_random = TRUE,
vaeac.save_data = FALSE,
vaeac.log_exp_cont_feat = FALSE,
vaeac.which_vaeac_model = "best",
vaeac.save_model = TRUE

)

vaeac_get_extra_para_default 55

Arguments

vaeac.model_description

String (default is make.names(Sys.time())). String containing, e.g., the name
of the data distribution or additional parameter information. Used in the save
name of the fitted model. If not provided, then a name will be generated based
on base::Sys.time() to ensure a unique name. We use base::make.names()
to ensure a valid file name for all operating systems.

vaeac.folder_to_save_model

String (default is base::tempdir()). String specifying a path to a folder where
the function is to save the fitted vaeac model. Note that the path will be removed
from the returned explain() object if vaeac.save_model = FALSE. Further-
more, the model cannot be moved from its original folder if we are to use the
vaeac_train_model_continue() function to continue training the model.

vaeac.pretrained_vaeac_model

List or String (default is NULL). 1) Either a list of class vaeac, i.e., the list
stored in explanation$internal$parameters$vaeac where explanation is
the returned list from an earlier call to the explain() function. 2) A string
containing the path to where the vaeac model is stored on disk, for example,
explanation$internal$parameters$vaeac$models$best.

vaeac.cuda Logical (default is FALSE). If TRUE, then the vaeac model will be trained using
cuda/GPU. If torch::cuda_is_available() is FALSE, the we fall back to use
CPU. If FALSE, we use the CPU. Using a GPU for smaller tabular dataset of-
ten do not improve the efficiency. See vignette("installation", package =
"torch") fo help to enable running on the GPU (only Linux and Windows).

vaeac.epochs_initiation_phase

Positive integer (default is 2). The number of epochs to run each of the vaeac.n_vaeacs_initialize
vaeac models before continuing to train only the best performing model.

vaeac.epochs_early_stopping

Positive integer (default is NULL). The training stops if there has been no im-
provement in the validation IWAE for vaeac.epochs_early_stopping epochs.
If the user wants the training process to be solely based on this training criterion,
then vaeac.epochs in explain() should be set to a large number. If NULL, then
shapr will internally set vaeac.epochs_early_stopping = vaeac.epochs such
that early stopping does not occur.

vaeac.save_every_nth_epoch

Positive integer (default is NULL). If provided, then the vaeac model after every
vaeac.save_every_nth_epochth epoch will be saved.

vaeac.val_ratio

Numeric (default is 0.25). Scalar between 0 and 1 indicating the ratio of in-
stances from the input data which will be used as validation data. That is,
vaeac.val_ratio = 0.25 means that 75% of the provided data is used as train-
ing data, while the remaining 25% is used as validation data.

vaeac.val_iwae_n_samples

Positive integer (default is 25). The number of generated samples used to com-
pute the IWAE criterion when validating the vaeac model on the validation data.

56 vaeac_get_extra_para_default

vaeac.batch_size

Positive integer (default is 64). The number of samples to include in each batch
during the training of the vaeac model. Used in torch::dataloader().

vaeac.batch_size_sampling

Positive integer (default is NULL) The number of samples to include in each
batch when generating the Monte Carlo samples. If NULL, then the function
generates the Monte Carlo samples for the provided coalitions/combinations and
all explicands sent to explain() at the time. The number of coalitions are
determined by n_batches in explain(). We recommend to tweak n_batches
rather than vaeac.batch_size_sampling. Larger batch sizes are often much
faster provided sufficient memory.

vaeac.running_avg_n_values

Positive integer (default is 5). The number of previous IWAE values to include
when we compute the running means of the IWAE criterion.

vaeac.skip_conn_layer

Logical (default is TRUE). If TRUE, we apply identity skip connections in each
layer, see skip_connection(). That is, we add the input X to the outcome of
each hidden layer, so the output becomes X + activation(WX + b).

vaeac.skip_conn_masked_enc_dec

Logical (default is TRUE). If TRUE, we apply concatenate skip connections be-
tween the layers in the masked encoder and decoder. The first layer of the
masked encoder will be linked to the last layer of the decoder. The second layer
of the masked encoder will be linked to the second to last layer of the decoder,
and so on.

vaeac.batch_normalization

Logical (default is FALSE). If TRUE, we apply batch normalization after the acti-
vation function. Note that if vaeac.skip_conn_layer = TRUE, then the normal-
ization is applied after the inclusion of the skip connection. That is, we batch
normalize the whole quantity X + activation(WX + b).

vaeac.paired_sampling

Logical (default is TRUE). If TRUE, we apply paired sampling to the training
batches. That is, the training observations in each batch will be duplicated,
where the first instance will be masked by S while the second instance will be
masked by S̄. This ensures that the training of the vaeac model becomes more
stable as the model has access to the full version of each training observation.
However, this will increase the training time due to more complex implemen-
tation and doubling the size of each batch. See paired_sampler() for more
information.

vaeac.masking_ratio

Numeric (default is 0.5). Probability of masking a feature in the mcar_mask_generator()
(MCAR = Missing Completely At Random). The MCAR masking scheme en-
sures that vaeac model can do arbitrary conditioning as all coalitions will be
trained. vaeac.masking_ratio will be overruled if vaeac.mask_gen_coalitions
is specified.

vaeac.mask_gen_coalitions

Matrix (default is NULL). Matrix containing the coalitions that the vaeac model
will be trained on, see specified_masks_mask_generator(). This parameter
is used internally in shapr when we only consider a subset of coalitions/combinations,

vaeac_get_extra_para_default 57

i.e., when n_combinations < 2nfeatures , and for group Shapley, i.e., when group
is specified in explain().

vaeac.mask_gen_coalitions_prob

Numeric array (default is NULL). Array of length equal to the height of vaeac.mask_gen_coalitions
containing the probabilities of sampling the corresponding coalitions in vaeac.mask_gen_coalitions.

vaeac.sigma_mu Numeric (default is 1e4). One of two hyperparameter values in the normal-
gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al.
(2022).

vaeac.sigma_sigma

Numeric (default is 1e-4). One of two hyperparameter values in the normal-
gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al.
(2022).

vaeac.sample_random

Logical (default is TRUE). If TRUE, the function generates random Monte Carlo
samples from the inferred generative distributions. If FALSE, the function use
the most likely values, i.e., the mean and class with highest probability for con-
tinuous and categorical, respectively.

vaeac.save_data

Logical (default is FALSE). If TRUE, then the data is stored together with the
model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

vaeac.log_exp_cont_feat

Logical (default is FALSE). If we are to log transform all continuous features be-
fore sending the data to vaeac(). The vaeac model creates unbounded Monte
Carlo sample values. Thus, if the continuous features are strictly positive (as
for, e.g., the Burr distribution and Abalone data set), it can be advantageous
to log transform the data to unbounded form before using vaeac. If TRUE,
then vaeac_postprocess_data() will take the exp of the results to get back
to strictly positive values when using the vaeac model to impute missing val-
ues/generate the Monte Carlo samples.

vaeac.which_vaeac_model

String (default is best). The name of the vaeac model (snapshots from different
epochs) to use when generating the Monte Carlo samples. The standard choices
are: "best" (epoch with lowest IWAE), "best_running" (epoch with lowest
running IWAE, see vaeac.running_avg_n_values), and last (the last epoch).
Note that additional choices are available if vaeac.save_every_nth_epoch is
provided. For example, if vaeac.save_every_nth_epoch = 5, then vaeac.which_vaeac_model
can also take the values "epoch_5", "epoch_10", "epoch_15", and so on.

vaeac.save_model

Boolean. If TRUE (default), the vaeac model will be saved either in a base::tempdir()
folder or in a user specified location in vaeac.folder_to_save_model. If
FALSE, then the paths to model and the model will will be deleted from the
returned object from explain().

Details

The vaeac model consists of three neural network (a full encoder, a masked encoder, and a de-
coder) based on the provided vaeac.depth and vaeac.width. The encoders map the full and

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

58 vaeac_plot_eval_crit

masked input representations to latent representations, respectively, where the dimension is given
by vaeac.latent_dim. The latent representations are sent to the decoder to go back to the real
feature space and provide a samplable probabilistic representation, from which the Monte Carlo
samples are generated. We use the vaeac method at the epoch with the lowest validation error
(IWAE) by default, but other possibilities are available but setting the vaeac.which_vaeac_model
parameter. See Olsen et al. (2022) for more details.

Value

Named list of the default values vaeac extra parameter arguments specified in this function call.
Note that both vaeac.model_description and vaeac.folder_to_save_model will change with
time and R session.

Author(s)

Lars Henry Berge Olsen

vaeac_plot_eval_crit Plot the training VLB and validation IWAE for vaeac models

Description

This function makes (ggplot2::ggplot()) figures of the training VLB and the validation IWAE
for a list of explain() objects with approach = "vaeac". See setup_approach() for more in-
formation about the vaeac approach. Two figures are returned by the function. In the figure, each
object in explanation_list gets its own facet, while in the second figure, we plot the criteria in
each facet for all objects.

Usage

vaeac_plot_eval_crit(
explanation_list,
plot_from_nth_epoch = 1,
plot_every_nth_epoch = 1,
criteria = c("VLB", "IWAE"),
plot_type = c("method", "criterion"),
facet_wrap_scales = "fixed",
facet_wrap_ncol = NULL

)

Arguments

explanation_list

A list of explain() objects applied to the same data, model, and vaeac must
be the used approach. If the entries in the list is named, then the function use
these names. Otherwise, it defaults to the approach names (with integer suffix
for duplicates) for the explanation objects in explanation_list.

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

vaeac_plot_eval_crit 59

plot_from_nth_epoch

Integer. If we are only plot the results form the nth epoch and so forth. The first
epochs can be large in absolute value and make the rest of the plot difficult to
interpret.

plot_every_nth_epoch

Integer. If we are only to plot every nth epoch. Usefully to illustrate the overall
trend, as there can be a lot of fluctuation and oscillation in the values between
each epoch.

criteria Character vector. The possible options are "VLB", "IWAE", "IWAE_running".
Default is the first two.

plot_type Character vector. The possible options are "method" and "criterion". Default is
to plot both.

facet_wrap_scales

String. Should the scales be fixed ("fixed", the default), free ("free"), or free
in one dimension ("free_x", "free_y").

facet_wrap_ncol

Integer. Number of columns in the facet wrap.

Details

See Olsen et al. (2022) or the blog post for a summary of the VLB and IWAE.

Value

Either a single ggplot2::ggplot() object or a list of ggplot2::ggplot() objects based on the
plot_type parameter.

Author(s)

Lars Henry Berge Olsen

Examples

Not run:
library(xgboost)
library(data.table)
library(shapr)

data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

ind_x_explain <- 1:6
x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ..x_var]

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://borea17.github.io/paper_summaries/iwae/

60 vaeac_plot_eval_crit

Fitting a basic xgboost model to the training data
model <- xgboost(data = as.matrix(x_train), label = y_train, nround = 100, verbose = FALSE)

Specifying the phi_0, i.e. the expected prediction without any features
p0 <- mean(y_train)

Train vaeac with and without paired sampling
explanation_paired <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = approach,
prediction_zero = p0,
n_samples = 1, # As we are only interested in the training of the vaeac
vaeac.epochs = 10, # Should be higher in applications.
vaeac.n_vaeacs_initialize = 1,
vaeac.width = 16,
vaeac.depth = 2,
vaeac.extra_parameters = list(vaeac.paired_sampling = TRUE)

)

explanation_regular <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = approach,
prediction_zero = p0,
n_samples = 1, # As we are only interested in the training of the vaeac
vaeac.epochs = 10, # Should be higher in applications.
vaeac.width = 16,
vaeac.depth = 2,
vaeac.n_vaeacs_initialize = 1,
vaeac.extra_parameters = list(vaeac.paired_sampling = FALSE)

)

Collect the explanation objects in an named list
explanation_list <- list(

"Regular sampling" = explanation_regular,
"Paired sampling" = explanation_paired

)

Call the function with the named list, will use the provided names
vaeac_plot_eval_crit(explanation_list = explanation_list)

The function also works if we have only one method,
but then one should only look at the method plot.
vaeac_plot_eval_crit(

explanation_list = explanation_list[2],
plot_type = "method"

)

Can alter the plot
vaeac_plot_eval_crit(

vaeac_plot_imputed_ggpairs 61

explanation_list = explanation_list,
plot_from_nth_epoch = 2,
plot_every_nth_epoch = 2,
facet_wrap_scales = "free"

)

If we only want the VLB
vaeac_plot_eval_crit(

explanation_list = explanation_list,
criteria = "VLB",
plot_type = "criterion"

)

If we want only want the criterion version
tmp_fig_criterion <-

vaeac_plot_eval_crit(explanation_list = explanation_list, plot_type = "criterion")

Since tmp_fig_criterion is a ggplot2 object, we can alter it
by, e.g,. adding points or smooths with se bands
tmp_fig_criterion + ggplot2::geom_point(shape = "circle", size = 1, ggplot2::aes(col = Method))
tmp_fig_criterion$layers[[1]] <- NULL
tmp_fig_criterion + ggplot2::geom_smooth(method = "loess", formula = y ~ x, se = TRUE) +

ggplot2::scale_color_brewer(palette = "Set1") +
ggplot2::theme_minimal()

End(Not run)

vaeac_plot_imputed_ggpairs

Plot Pairwise Plots for Imputed and True Data

Description

A function that creates a matrix of plots (GGally::ggpairs()) from generated imputations from the
unconditioned distribution p(x) estimated by a vaeac model, and then compares the imputed values
with data from the true distribution (if provided). See ggpairs for an introduction to GGally::ggpairs(),
and the corresponding vignette.

Usage

vaeac_plot_imputed_ggpairs(
explanation,
which_vaeac_model = "best",
x_true = NULL,
add_title = TRUE,
alpha = 0.5,
upper_cont = c("cor", "points", "smooth", "smooth_loess", "density", "blank"),
upper_cat = c("count", "cross", "ratio", "facetbar", "blank"),

https://www.blopig.com/blog/2019/06/a-brief-introduction-to-ggpairs/
https://ggobi.github.io/ggally/articles/ggally_plots.html

62 vaeac_plot_imputed_ggpairs

upper_mix = c("box", "box_no_facet", "dot", "dot_no_facet", "facethist",
"facetdensity", "denstrip", "blank"),

lower_cont = c("points", "smooth", "smooth_loess", "density", "cor", "blank"),
lower_cat = c("facetbar", "ratio", "count", "cross", "blank"),
lower_mix = c("facetdensity", "box", "box_no_facet", "dot", "dot_no_facet",
"facethist", "denstrip", "blank"),

diag_cont = c("densityDiag", "barDiag", "blankDiag"),
diag_cat = c("barDiag", "blankDiag"),
cor_method = c("pearson", "kendall", "spearman")

)

Arguments

explanation Shapr list. The output list from the explain() function.
which_vaeac_model

String. Indicating which vaeac model to use when generating the samples. Pos-
sible options are always 'best', 'best_running', and 'last'. All possible
options can be obtained by calling names(explanation$internal$parameters$vaeac$models).

x_true Data.table containing the data from the distribution that the vaeac model is fitted
to.

add_title Logical. If TRUE, then a title is added to the plot based on the internal description
of the vaeac model specified in which_vaeac_model.

alpha Numeric between 0 and 1 (default is 0.5). The degree of color transparency.
upper_cont String. Type of plot to use in upper triangle for continuous features, see GGally::ggpairs().

Possible options are: 'cor' (default), 'points', 'smooth', 'smooth_loess',
'density', and 'blank'.

upper_cat String. Type of plot to use in upper triangle for categorical features, see GGally::ggpairs().
Possible options are: 'count' (default), 'cross', 'ratio', 'facetbar', and
'blank'.

upper_mix String. Type of plot to use in upper triangle for mixed features, see GGally::ggpairs().
Possible options are: 'box' (default), 'box_no_facet', 'dot', 'dot_no_facet',
'facethist', 'facetdensity', 'denstrip', and 'blank'

lower_cont String. Type of plot to use in lower triangle for continuous features, see GGally::ggpairs().
Possible options are: 'points' (default), 'smooth', 'smooth_loess', 'density',
'cor', and 'blank'.

lower_cat String. Type of plot to use in lower triangle for categorical features, see GGally::ggpairs().
Possible options are: 'facetbar' (default), 'ratio', 'count', 'cross', and
'blank'.

lower_mix String. Type of plot to use in lower triangle for mixed features, see GGally::ggpairs().
Possible options are: 'facetdensity' (default), 'box', 'box_no_facet', 'dot',
'dot_no_facet', 'facethist', 'denstrip', and 'blank'.

diag_cont String. Type of plot to use on the diagonal for continuous features, see GGally::ggpairs().
Possible options are: 'densityDiag' (default), 'barDiag', and 'blankDiag'.

diag_cat String. Type of plot to use on the diagonal for categorical features, see GGally::ggpairs().
Possible options are: 'barDiag' (default) and 'blankDiag'.

cor_method String. Type of correlation measure, see GGally::ggpairs(). Possible options
are: 'pearson' (default), 'kendall', and 'spearman'.

vaeac_plot_imputed_ggpairs 63

Value

A GGally::ggpairs() figure.

Author(s)

Lars Henry Berge Olsen

Examples

Not run:
library(xgboost)
library(data.table)
library(shapr)

data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

ind_x_explain <- 1:6
x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost(

data = as.matrix(x_train),
label = y_train,
nround = 100,
verbose = FALSE

)

explanation <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "vaeac",
prediction_zero = mean(y_train),
n_samples = 1,
vaeac.epochs = 10,
vaeac.n_vaeacs_initialize = 1

)

Plot the results
figure <- vaeac_plot_imputed_ggpairs(

explanation = explanation,
which_vaeac_model = "best",
x_true = x_train,
add_title = TRUE

)

64 vaeac_train_model

figure

Note that this is an ggplot2 object which we can alter, e.g., we can change the colors.
figure +

ggplot2::scale_color_manual(values = c("#E69F00", "#999999")) +
ggplot2::scale_fill_manual(values = c("#E69F00", "#999999"))

End(Not run)

vaeac_train_model Train the Vaeac Model

Description

Function that fits a vaeac model to the given dataset based on the provided parameters, as de-
scribed in Olsen et al. (2022). Note that all default parameters specified below origin from
setup_approach.vaeac() and vaeac_get_extra_para_default().

Usage

vaeac_train_model(
x_train,
model_description,
folder_to_save_model,
cuda,
n_vaeacs_initialize,
epochs_initiation_phase,
epochs,
epochs_early_stopping,
save_every_nth_epoch,
val_ratio,
val_iwae_n_samples,
depth,
width,
latent_dim,
lr,
batch_size,
running_avg_n_values,
activation_function,
skip_conn_layer,
skip_conn_masked_enc_dec,
batch_normalization,
paired_sampling,
masking_ratio,
mask_gen_coalitions,
mask_gen_coalitions_prob,
sigma_mu,
sigma_sigma,

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

vaeac_train_model 65

save_data,
log_exp_cont_feat,
which_vaeac_model,
verbose,
seed,
...

)

Arguments

x_train A data.table containing the training data. Categorical data must have class
names 1, 2, . . . ,K.

model_description

String (default is make.names(Sys.time())). String containing, e.g., the name
of the data distribution or additional parameter information. Used in the save
name of the fitted model. If not provided, then a name will be generated based
on base::Sys.time() to ensure a unique name. We use base::make.names()
to ensure a valid file name for all operating systems.

folder_to_save_model

String (default is base::tempdir()). String specifying a path to a folder where
the function is to save the fitted vaeac model. Note that the path will be removed
from the returned explain() object if vaeac.save_model = FALSE.

cuda Logical (default is FALSE). If TRUE, then the vaeac model will be trained using
cuda/GPU. If torch::cuda_is_available() is FALSE, the we fall back to use
CPU. If FALSE, we use the CPU. Using a GPU for smaller tabular dataset of-
ten do not improve the efficiency. See vignette("installation", package =
"torch") fo help to enable running on the GPU (only Linux and Windows).

n_vaeacs_initialize

Positive integer (default is 4). The number of different vaeac models to initiate in
the start. Pick the best performing one after epochs_initiation_phase epochs
(default is 2) and continue training that one.

epochs_initiation_phase

Positive integer (default is 2). The number of epochs to run each of the n_vaeacs_initialize
vaeac models before continuing to train only the best performing model.

epochs Positive integer (default is 100). The number of epochs to train the final vaeac
model. This includes epochs_initiation_phase, where the default is 2.

epochs_early_stopping

Positive integer (default is NULL). The training stops if there has been no im-
provement in the validation IWAE for epochs_early_stopping epochs. If the
user wants the training process to be solely based on this training criterion, then
epochs in explain() should be set to a large number. If NULL, then shapr will
internally set epochs_early_stopping = vaeac.epochs such that early stop-
ping does not occur.

save_every_nth_epoch

Positive integer (default is NULL). If provided, then the vaeac model after every
save_every_nth_epochth epoch will be saved.

66 vaeac_train_model

val_ratio Numeric (default is 0.25). Scalar between 0 and 1 indicating the ratio of in-
stances from the input data which will be used as validation data. That is,
val_ratio = 0.25 means that 75% of the provided data is used as training data,
while the remaining 25% is used as validation data.

val_iwae_n_samples

Positive integer (default is 25). The number of generated samples used to com-
pute the IWAE criterion when validating the vaeac model on the validation data.

depth Positive integer (default is 3). The number of hidden layers in the neural net-
works of the masked encoder, full encoder, and decoder.

width Positive integer (default is 32). The number of neurons in each hidden layer in
the neural networks of the masked encoder, full encoder, and decoder.

latent_dim Positive integer (default is 8). The number of dimensions in the latent space.
lr Positive numeric (default is 0.001). The learning rate used in the torch::optim_adam()

optimizer.
batch_size Positive integer (default is 64). The number of samples to include in each batch

during the training of the vaeac model. Used in torch::dataloader().
running_avg_n_values

running_avg_n_values Positive integer (default is 5). The number of previous
IWAE values to include when we compute the running means of the IWAE cri-
terion.

activation_function

An torch::nn_module() representing an activation function such as, e.g., torch::nn_relu()
(default), torch::nn_leaky_relu(), torch::nn_selu(), or torch::nn_sigmoid().

skip_conn_layer

Logical (default is TRUE). If TRUE, we apply identity skip connections in each
layer, see skip_connection(). That is, we add the input X to the outcome of
each hidden layer, so the output becomes X + activation(WX + b).

skip_conn_masked_enc_dec

Logical (default is TRUE). If TRUE, we apply concatenate skip connections be-
tween the layers in the masked encoder and decoder. The first layer of the
masked encoder will be linked to the last layer of the decoder. The second layer
of the masked encoder will be linked to the second to last layer of the decoder,
and so on.

batch_normalization

Logical (default is FALSE). If TRUE, we apply batch normalization after the acti-
vation function. Note that if skip_conn_layer = TRUE, then the normalization
is applied after the inclusion of the skip connection. That is, we batch normalize
the whole quantity X + activation(WX + b).

paired_sampling

Logical (default is TRUE). If TRUE, we apply paired sampling to the training
batches. That is, the training observations in each batch will be duplicated,
where the first instance will be masked by S while the second instance will be
masked by S̄. This ensures that the training of the vaeac model becomes more
stable as the model has access to the full version of each training observation.
However, this will increase the training time due to more complex implemen-
tation and doubling the size of each batch. See paired_sampler() for more
information.

vaeac_train_model 67

masking_ratio Numeric (default is 0.5). Probability of masking a feature in the mcar_mask_generator()
(MCAR = Missing Completely At Random). The MCAR masking scheme en-
sures that vaeac model can do arbitrary conditioning as all coalitions will be
trained. masking_ratio will be overruled if mask_gen_coalitions is speci-
fied.

mask_gen_coalitions

Matrix (default is NULL). Matrix containing the coalitions that the vaeac model
will be trained on, see specified_masks_mask_generator(). This parameter
is used internally in shapr when we only consider a subset of coalitions/combinations,
i.e., when n_combinations < 2nfeatures , and for group Shapley, i.e., when group
is specified in explain().

mask_gen_coalitions_prob

Numeric array (default is NULL). Array of length equal to the height of mask_gen_coalitions
containing the probabilities of sampling the corresponding coalitions in mask_gen_coalitions.

sigma_mu Numeric (default is 1e4). One of two hyperparameter values in the normal-
gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al.
(2022).

sigma_sigma Numeric (default is 1e-4). One of two hyperparameter values in the normal-
gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al.
(2022).

save_data Logical (default is FALSE). If TRUE, then the data is stored together with the
model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

log_exp_cont_feat

Logical (default is FALSE). If we are to log transform all continuous features be-
fore sending the data to vaeac(). The vaeac model creates unbounded Monte
Carlo sample values. Thus, if the continuous features are strictly positive (as
for, e.g., the Burr distribution and Abalone data set), it can be advantageous
to log transform the data to unbounded form before using vaeac. If TRUE,
then vaeac_postprocess_data() will take the exp of the results to get back
to strictly positive values when using the vaeac model to impute missing val-
ues/generate the Monte Carlo samples.

which_vaeac_model

String (default is best). The name of the vaeac model (snapshots from different
epochs) to use when generating the Monte Carlo samples. The standard choices
are: "best" (epoch with lowest IWAE), "best_running" (epoch with lowest
running IWAE, see vaeac.running_avg_n_values), and last (the last epoch).
Note that additional choices are available if vaeac.save_every_nth_epoch is
provided. For example, if vaeac.save_every_nth_epoch = 5, then vaeac.which_vaeac_model
can also take the values "epoch_5", "epoch_10", "epoch_15", and so on.

verbose Boolean. An integer specifying the level of verbosity. Use 0 (default) for no
verbosity, 1 for low verbose, and 2 for high verbose.

seed Positive integer (default is 1). Seed for reproducibility. Specifies the seed before
any randomness based code is being run.

... List of extra parameters, currently not used.

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

68 vaeac_train_model_continue

Details

The vaeac model consists of three neural networks, i.e., a masked encoder, a full encoder, and
a decoder. The networks have shared depth, width, and activation_function. The encoders
maps the x_train to a latent representation of dimension latent_dim, while the decoder maps
the latent representations back to the feature space. See Olsen et al. (2022) for more details.
The function first initiates n_vaeacs_initialize vaeac models with different randomly initiated
network parameter values to remedy poorly initiated values. After epochs_initiation_phase
epochs, the n_vaeacs_initialize vaeac models are compared and the function continues to only
train the best performing one for a total of epochs epochs. The networks are trained using the
ADAM optimizer with the learning rate is lr.

Value

A list containing the training/validation errors and paths to where the vaeac models are saved on the
disk.

Author(s)

Lars Henry Berge Olsen

vaeac_train_model_continue

Continue to Train the vaeac Model

Description

Function that loads a previously trained vaeac model and continue the training, either on new data
or on the same dataset as it was trained on before. If we are given a new dataset, then we assume
that new dataset has the same distribution and one_hot_max_sizes as the original dataset.

Usage

vaeac_train_model_continue(
explanation,
epochs_new,
lr_new = NULL,
x_train = NULL,
save_data = FALSE,
verbose = 0,
seed = 1

)

Arguments

explanation A explain() object and vaeac must be the used approach.

epochs_new Positive integer. The number of extra epochs to conduct.

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

vaeac_train_model_continue 69

lr_new Positive numeric. If we are to overwrite the old learning rate in the adam opti-
mizer.

x_train A data.table containing the training data. Categorical data must have class
names 1, 2, . . . ,K.

save_data Logical (default is FALSE). If TRUE, then the data is stored together with the
model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

verbose Boolean. An integer specifying the level of verbosity. Use 0 (default) for no
verbosity, 1 for low verbose, and 2 for high verbose.

seed Positive integer (default is 1). Seed for reproducibility. Specifies the seed before
any randomness based code is being run.

Value

A list containing the training/validation errors and paths to where the vaeac models are saved on the
disk.

Author(s)

Lars Henry Berge Olsen

Index

base::make.names(), 52, 55, 65
base::Sys.time(), 52, 55, 65
base::tempdir(), 53, 55, 57, 65

compute_vS, 3
compute_vS(), 23

devtools::release(), 42

explain, 3
explain(), 3, 18, 23, 28, 30, 33, 37, 38, 45,

49, 51, 53–58, 62, 65, 67, 68
explain_forecast, 12
explain_tripledot_docs, 18

feature_combinations, 21
finalize_explanation, 22

get_cov_mat, 26
get_data_forecast, 27
get_data_specs(), 44
get_model_specs(), 44
get_mu_vec, 28
get_supported_approaches, 28
get_supported_models(), 4, 5, 12, 14
GGally::ggpairs(), 61–63
ggplot2::coord_flip(), 38
ggplot2::element_text(), 38
ggplot2::ggplot(), 30, 34, 38, 39, 58, 59
ggplot2::resolution(), 34, 38
ggplot2::theme(), 38

lag_data, 29

Matrix::nearPD(), 26
mcar_mask_generator(), 56, 67

paired_sampler(), 52, 56, 66
parsnip::linear_reg(), 7, 19, 49
plot.shapr, 29
plot_MSEv_eval_crit, 33

plot_SV_several_approaches, 37
process_factor_data, 41

RColorBrewer::RColorBrewer(), 38
recipes::recipe(), 8, 20, 49
reg_forecast_setup, 42
release_questions, 42
rsample::vfold_cv(), 8, 20, 49

setup, 43
setup_approach, 45
setup_approach(), 58
setup_approach.categorical, 5, 14, 18
setup_approach.copula, 5, 14, 18
setup_approach.ctree, 5, 14, 18
setup_approach.empirical, 5, 14, 18
setup_approach.gaussian, 5, 14, 18
setup_approach.independence, 5, 14, 18
setup_approach.regression_separate, 5,

18
setup_approach.regression_surrogate, 5,

18
setup_approach.timeseries, 5, 14, 18
setup_approach.vaeac, 5, 14, 18
setup_approach.vaeac(), 64
setup_computation, 51
skip_connection(), 56, 66
specified_masks_mask_generator(), 56,

67

torch::cuda_is_available(), 55, 65
torch::dataloader(), 52, 56, 66
torch::nn_leaky_relu(), 7, 16, 21, 50, 66
torch::nn_module(), 7, 16, 21, 50, 66
torch::nn_relu(), 7, 16, 21, 50, 66
torch::nn_selu(), 7, 16, 21, 50, 66
torch::nn_sigmoid(), 7, 16, 21, 50, 66
torch::optim_adam(), 7, 16, 21, 50, 53, 66

vaeac(), 52, 57, 67

70

INDEX 71

vaeac_get_data_objects, 51
vaeac_get_evaluation_criteria, 53
vaeac_get_extra_para_default, 54
vaeac_get_extra_para_default(), 7, 16,

21, 50, 64
vaeac_plot_eval_crit, 58
vaeac_plot_imputed_ggpairs, 61
vaeac_postprocess_data(), 52, 57, 67
vaeac_train_model, 64
vaeac_train_model_continue, 68
vaeac_train_model_continue(), 55, 57, 67,

69

	compute_vS
	explain
	explain_forecast
	explain_tripledot_docs
	feature_combinations
	finalize_explanation
	get_cov_mat
	get_data_forecast
	get_mu_vec
	get_supported_approaches
	lag_data
	plot.shapr
	plot_MSEv_eval_crit
	plot_SV_several_approaches
	process_factor_data
	reg_forecast_setup
	release_questions
	setup
	setup_approach
	setup_computation
	vaeac_get_data_objects
	vaeac_get_evaluation_criteria
	vaeac_get_extra_para_default
	vaeac_plot_eval_crit
	vaeac_plot_imputed_ggpairs
	vaeac_train_model
	vaeac_train_model_continue
	Index

